CMSC 474, Introduction to Game Theory

17. Repeated Games

Mohammad T. Hajiaghayi
University of Maryland
Repeated Games

- Used by game theorists, economists, social and behavioral scientists as highly simplified models of various real-world situations
Finitely Repeated Games

- In repeated games, some game G is played multiple times by the same set of agents.
 - G is called the **stage game**
 - Usually (but not always) a normal-form game
 - Each occurrence of G is called an **iteration**, **round**, or **stage**
- Usually each agent knows what all the agents did in the previous iterations, but not what they’re doing in the current iteration.
 - Thus, **imperfect information** with **perfect recall**
- Usually each agent’s payoff function is additive

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3, 3</td>
<td>0, 5</td>
</tr>
<tr>
<td>D</td>
<td>5, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Prisoner’s Dilemma:

Iterated Prisoner’s Dilemma, 2 iterations:

Agent 1: Round 1: C, Round 2: D

Agent 2: Round 1: C, Round 2: C

Total payoff: $3 + 5 = 5$, $3 + 0 = 3$
The repeated game has a much bigger strategy space than the stage game.

One kind of strategy is a stationary strategy:

- Use the same strategy in every stage game

More generally, an agent’s play at each stage may depend on what happened in previous iterations.
Examples

Some well-known IPD strategies:

- **AllC**: always cooperate
- **AllD**: always defect
- **Grim**: cooperate until the other agent defects, then defect forever
- **Tit-for-Tat (TFT)**: on 1st move, cooperate. On nth move, repeat the other agent’s (n−1)th move
- **Tit-for-Two-Tats (TFTT)**: like TFT, but only retaliates if the other agent defects twice in a row
- **Tester**: defect on round 1. If the other agent retaliates, play TFT. Otherwise, alternately cooperate and defect
- **Pavlov**: on 1st round, cooperate. Thereafter, win => use same action on next round; lose => switch to the other action ("win" means 3 or 5 points, "lose" means 0 or 1 point)
Backward Induction

- If the number of iterations is finite and all players know what it is, we can use backward induction to find a subgame-perfect equilibrium.

- This time it’s simpler than game-tree search.
 - Regardless of what move you make, the next state is always the same.
 - Another instance of the stage game.
 - The only difference is how many points you’ve accumulated so far.

- First calculate the SPE actions for round n (the last iteration).

- Then for round $j = n-1, n-2, \ldots, 1$,
 - Common knowledge of rationality \Rightarrow everyone will play their SPE actions after round j.
 - Construct a payoff matrix showing what the cumulative payoffs will be from round j onward.
 - From this, calculate what the SPE actions will be at round j.
Example

- n repetitions of the Prisoner’s Dilemma
- Round n (the last round)
 - SPE profile is (D,D); each player gets 1
- Case $j = n-1$:
 - If everyone plays their SPE actions after round j, then
 - Cumulative payoffs = 1 + payoffs at round j
 - SPE actions at round j are (D,D); each player gets 2
- Case $j = n-2$:
 - If everyone plays SPE actions after round j, then
 - Cumulative payoffs = 2 + payoffs at round j
 - SPE actions at round j are (D,D); each player gets 3
 ...
- The SPE is to play (D,D) on every round
- As in the Centipede game, there are both empirical and theoretical criticisms
Two-Player Zero-Sum Repeated Games

- In a two-player zero-sum repeated game, the SPE is for every player to play a minimax strategy at every round

- Your minimax strategy is best for you if the other agents also use their minimax strategies

- In some cases, the other agents won’t use those strategies
 - If you can predict their actions accurately, you may be able to do much better than the minimax strategy would do

- Why won’t the other agents use their minimax strategies?
 - Because they may be trying to predict your actions too
Roshambo (Rock, Paper, Scissors)

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td>0, 0</td>
<td>–1, 1</td>
<td>1, –1</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td>1, –1</td>
<td>0, 0</td>
<td>–1, 1</td>
<td></td>
</tr>
<tr>
<td>Scissors</td>
<td>–1, 1</td>
<td>1, –1</td>
<td>0, 0</td>
<td></td>
</tr>
</tbody>
</table>

- Nash equilibrium for the stage game:
 - choose randomly, \(P=1/3 \) for each move
- Nash equilibrium for the repeated game:
 - \(always \) choose randomly, \(P=1/3 \) for each move
- Expected payoff = 0
Roshambo (Rock, Paper, Scissors)

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A₂</td>
<td>Rock</td>
<td>Paper</td>
<td>Scissors</td>
</tr>
<tr>
<td>Rock</td>
<td>0, 0</td>
<td>−1, 1</td>
<td>1, −1</td>
</tr>
<tr>
<td>Paper</td>
<td>1, −1</td>
<td>0, 0</td>
<td>−1, 1</td>
</tr>
<tr>
<td>Scissors</td>
<td>−1, 1</td>
<td>1, −1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- 1999 international roshambo programming competition
 - www.cs.ualberta.ca/~darse/rsbpc1.html

 - Round-robin tournament:
 - 55 programs, 1000 iterations for each pair of programs
 - Lowest possible score = −55000; highest possible score = 55000

 - Average over 25 tournaments:
 - Lowest score (Cheesebot): −36006
 - Highest score (Iocaine Powder): 13038

 - http://www.veoh.com/watch/e1077915X5GNatn
Infinitely Repeated Games

- An infinitely repeated game in extensive form would be an infinite tree
 - Payoffs can’t be attached to any terminal nodes
- Let $r_i^{(1)}, r_i^{(2)}, \ldots$ be an infinite sequence of payoffs for agent i
 - the sum usually is infinite, so it can’t be i’s payoff
- Two common ways around this problem:
 1. **Average reward**: average over the first k iterations; let $k \to \infty$
 $$\lim_{k \to \infty} \sum_{j=1}^{k} r_i^{(j)} / k$$
 2. **Future discounted reward**: $\sum_{j=1}^{\infty} \beta^{j-1} r_i^{(j)}$
 - $\beta \in [0,1)$ is a constant called the *discount factor*
 - Two possible interpretations:
 1. The agent cares more about the present than the future
 2. At each round, the game ends with probability $1 - \beta$
Nash Equilibria

- What are the Nash Equilibria in an infinitely repeated game?
 - Often many more than if the game were finitely repeated
 - Infinitely many Nash equilibria for the infinitely repeated prisoner’s dilemma

- There’s a “folk theorem” that tells what the possible equilibrium payoffs are in repeated games, if we use average rewards

- First we need some definitions …
Feasible Payoff Profiles

- A payoff profile \(\mathbf{r} = (r_1, r_2, \ldots, r_n) \) is **feasible** if it is a convex rational combination of \(G \)'s possible outcomes
 - i.e., for every action profile \(\mathbf{a}_j \) there is a rational nonnegative number \(c_j \) such that \(\sum_j c_j = 1 \) and \(\sum_j c_j \mathbf{u}(\mathbf{a}_j) = \mathbf{r} \)

- Intuitive meaning:
 - There’s a finite sequence of action profiles for which the average reward profile is \(\mathbf{r} \)

- Example: in the Prisoner’s Dilemma,
 \[
 \begin{align*}
 \mathbf{u}(C,C) &= (3,3) & \mathbf{u}(C,D) &= (0,5) \\
 \mathbf{u}(D,C) &= (5,0) & \mathbf{u}(D,D) &= (1,1)
 \end{align*}
 \]
 - \(\frac{1}{4} \mathbf{u}(C,C) + \frac{1}{2} \mathbf{u}(C,D) + \frac{1}{4} \mathbf{u}(D,C) + 0 \mathbf{u}(D,D) = (8/4, 13/4) \)
 - so \((2, 13/4) \) is feasible
 - \((5,5) \) isn’t feasible; no convex combination can produce it
 - \((\pi/2, \pi/2) \) isn’t feasible; no **rational** convex combination can produce it

Keep repeating this sequence:

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Agent 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
</tr>
</tbody>
</table>
Enforceable Payoff Profiles

- A payoff profile $\mathbf{r} = (r_1, \ldots, r_n)$ is **enforceable** if for each i,
 - $r_i \geq \text{player } i^{\prime}\text{'s minimax value in } G$

- Intuitive meaning:
 - If i deviates from the sequence of action profiles that produces \mathbf{r}, the other agents can punish i by reducing $i^{\prime}\text{'s average reward to } \leq i^{\prime}\text{'s minimax value}$

- The other agents can do this by using **grim trigger** strategies:
 - Generalization of the Grim strategy
 - If any agent i deviates from the sequence of actions it is supposed to perform, then the other agents punish i forever by playing their minimax strategies against i
The Theorem

Theorem: If G is infinitely repeated game with average rewards, then

- If there’s a Nash equilibrium with payoff profile r, then r is enforceable
- If r is both feasible and enforceable, then there’s a Nash equilibrium with payoff profile r

Summary of the proof:

- **Part 1:** Use the definitions of minimax and best-response to show that in every equilibrium, each agent i’s average payoff $\geq i$’s minimax value
- **Part 2:** Show how to construct a Nash equilibrium that gives each agent i an average payoff r_i
 - The agents are grim-trigger strategies that cycle in lock-step through a sequence of game outcomes $r^{(1)}, r^{(2)}, ..., r^{(n)}$ such that $r = u(r^{(1)}) + u(r^{(2)}) + ... + u(r^{(n)})$
 - No agent can do better by deviating, because the others will punish it \Rightarrow Nash equilibrium
Iterated Prisoner’s Dilemma

- For a finitely iterated game with a large number of iterations, the practical effect can be roughly the same as if it were infinite.

- E.g., the Iterated Prisoner’s Dilemma

- Widely used to study the emergence of cooperative behavior among agents
 - e.g., Axelrod (1984), *The Evolution of Cooperation*

- Axelrod ran a famous set of tournaments
 - People contributed strategies encoded as computer programs
 - Axelrod played them against each other

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3, 3</td>
<td>0, 5</td>
</tr>
<tr>
<td>D</td>
<td>5, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

If I defect now, he might punish me by defecting next time.
TFT with Other Agents

- In Axelrod’s tournaments, TFT usually did best
 - It could establish and maintain cooperations with many other agents
 - It could prevent malicious agents from taking advantage of it

<table>
<thead>
<tr>
<th>TFT</th>
<th>AllC, TFT, TFTT, Grim, or Pavlov</th>
<th>TFT</th>
<th>AllD</th>
<th>TFT Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>C</td>
</tr>
</tbody>
</table>

...
Example:

- A real-world example of the IPD, described in Axelrod’s book:
 - World War I trench warfare

- Incentive to cooperate:
 - If I attack the other side, then they’ll retaliate and I’ll get hurt
 - If I don’t attack, maybe they won’t either

- Result: evolution of cooperation
 - Although the two infantries were supposed to be enemies, they avoided attacking each other
Summary

- Topics covered:
 - Finitely repeated games
 - Infinitely repeated games
 - Evolution of cooperation