CMSC 474, Introduction to Game Theory

17. Repeated Games

Mohammad T. Hajiaghayi University of Maryland

Repeated Games

• Used by game theorists, economists, social and behavioral scientists as highly simplified models of various real-world situations

Iterated Prisoner's Dilemma

Roshambo

Repeated Ultimatum Game

Iterated Battle of the Sexes

Iterated Chicken Game

Repeated Stag Hunt

Repeated Matching Pennies

Finitely Repeated Games

- In repeated games, some game G is played multiple times by the same set of agents
 - > G is called the stage game
 - Usually (but not always) a normalform game
 - Each occurrence of G is called an iteration, round, or stage
- Usually each agent knows what all the agents did in the previous iterations, but not what they're doing in the current iteration
 - Thus, imperfect information with perfect recall
 - Usually each agent's payoff function is additive

Iterated Prisoner's Dilemma, 2 iterations:

	Agent 1:	Agent 2:
Round 1:	С	С
Round 2:	D	С
Total payoff:	3+5 = 5	3+0 = 3

Strategies

• The repeated game has a much bigger strategy space than the stage game

C

D

- One kind of strategy is a stationary strategy:
 - > Use the same strategy in every stage game
- More generally, an agent's play at each stage may depend on what happened in previous iterations

Examples

Some well-known IPD strategies:

- AllC: always cooperate
- AllD: always defect
- Grim: cooperate until the other agent defects, then defect forever
- Tit-for-Tat (TFT): on 1st move, cooperate. On n^{th} move, repeat the other agent's $(n-1)^{\text{th}}$ move
- **Tit-for-Two-Tats (TFTT)**: like TFT, but only retaliates if the other agent defects twice in
- **Tester**: defect on round 1. If the other agent retal play TFT. Otherwise, alternately cooperate and d
- **Pavlov:** on 1st round, cooperate. Thereafter, win => use same action on next round; lose => switch to the other action ("win" means 3 or 5 points, "lose" means 0 or 1

AllC,	AllC,	TFT	Tester	TFTT	Tester
Grim, TFT or	Grim, TET or	C	D	С	D
Pavlov	Pavlov	D	С	С	C
С	C	C	С	С	C
С	C	C	С	С	D
С	C	С	С	С	C
С	C	C	С	С	D
С	C	C	С	С	С
:	:	:	÷	:	÷
		TETO	r		
		TFT o Grim	r AllD	Pavlo	v AllD
ice in a	row	TFT o Grim C	r AllD D	Pavlo C	v AllD D
ice in a nt retali	row ates,	TFT o Grim C D	r AllD D D	Pavlo C D	v AllD D D
ice in a nt retali e and de	row ates, efect	TFT o Grim C D D	r AllD D D D	Pavlo C D C	v AllD D D D
ice in a nt retali e and de er.	row ates, efect	TFT o Grim C D D D	r AllD D D D D	Pavlo ⁻ C D C D	v AllD D D D D
ice in a nt retali e and de er,	row ates, efect	TFT o Grim C D D D D	r AllD D D D D D	Pavlo C D C D C	v AllD D D D D D
ice in a nt retali e and de er,	row ates, efect	TFT o Grim C D D D D D	r AllD D D D D D D	Pavlo C D C D C D C D	v AllD D D D D D D
ice in a nt retali e and de er, 0 or 1 p	row ates, efect	TFT o Grim C D D D D D D D	r AllD D D D D D D D	Pavlov C D C D C D C	v AllD D D D D D D D D

Backward Induction

- If the number of iterations is finite and all players know what it is, we can use backward induction to find a subgame-perfect equilibrium
- This time it's simpler than game-tree search
 - > Regardless of what move you make, the next state is always the same
 - Another instance of the stage game
 - > The only difference is how many points you've accumulated so far
- First calculate the SPE actions for round *n* (the last iteration)
- Then for round j = n-1, n-2, ..., 1,
 - ➤ Common knowledge of rationality → everyone will play their SPE actions after round j
 - Construct a payoff matrix showing what the cumulative payoffs will be from round *j* onward
 - > From this, calculate what the SPE actions will be at round j

Example

• <i>n</i> repetitions of the Prisoner's Dilemma	n	C	D
 Round <i>n</i> (the last round) 	C	3, 3	0, 5
> SPE profile is (D,D) ; each player gets 1	D	5, 0	1, 1
• Case $j = n - 1$:			162373
> If everyone plays their SPE actions after round j , then	<i>n</i> –1	С	D
• Cumulative payoffs = $1 + \text{payoffs}$ at round j	→ C	4, 4	1,6
• SPE actions at round <i>j</i> are (D,D); each player gets 2			
• Case $j = n-2$:	D	6, 1	2,2
> If everyone plays SPE actions after round j , then	<i>n</i> –2	С	D
• Cumulative payoffs = 2 + payoffs at round <i>j</i>	C	5 5	27
• SPE actions at round <i>j</i> are (D,D); each player gets 3		5, 5	2, 7
	D	7, 2	3, 3
		A DESCRIPTION OF THE R. P. C.	77.0 10.0

- The SPE is to play (D,D) on every round
- As in the Centipede game, there are both empirical and theoretical criticisms

Two-Player Zero-Sum Repeated Games

- In a two-player zero-sum repeated game, the SPE is for every player to play a minimax strategy at every round
- Your minimax strategy is best for you *if the other agents also use their minimax strategies*
- In some cases, the other agents *won't* use those strategies
 - If you can predict their actions accurately, you may be able to do much better than the minimax strategy would do
- Why won't the other agents use their minimax strategies?
 - Because they may be trying to predict your actions too

Roshambo (Rock, Paper, Scissors)

A ₁ A ₂	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

• Nash equilibrium for the stage game:

- > choose randomly, P=1/3 for each move
- Nash equilibrium for the repeated game:
 - > always choose randomly, P=1/3 for each move
- Expected payoff = 0

Roshambo (Rock, Paper, Scissors)

A ₁ A ₂	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

- Round-robin tournament:
 - 55 programs, 1000 iterations for each pair of programs
 - Lowest possible score = -55000; highest possible score = 55000
- > Average over 25 tournaments:
 - Lowest score (*Cheesebot*): -36006
 - Highest score (Iocaine Powder): 13038
 - http://www.veoh.com/watch/e1077915X5GNatn

Infinitely Repeated Games

- An infinitely repeated game in extensive form would be an infinite tree
 - Payoffs can't be attached to any terminal nodes
- Let $r_i^{(1)}$, $r_i^{(2)}$, ... be an infinite sequence of payoffs for agent *i*
 - the sum usually is infinite, so it can't be i's payoff
- Two common ways around this problem:
- **1.** Average reward: average over the first k iterations; let $k \to \infty$

$$\lim_{k \to \infty} \sum_{j=1}^{k} r_i^{(j)} / k$$

- **2. Future discounted reward**: $a_{j=1}^{*} b^{j} r_{i}^{(j)}$
 - $\beta \in [0,1)$ is a constant called the *discount factor*
 - > Two possible interpretations:
 - 1. The agent cares more about the present than the future
 - 2. At each round, the game ends with probability 1β

Nash Equilibria

• What are the Nash Equilibria in an infinitely repeated game?

- > Often many more than if the game were finitely repeated
- Infinitely many Nash equilibria for the infinitely repeated prisoner's dilemma
- There's a "folk theorem" that tells what the possible equilibrium **payoffs** are in repeated games, if we use average rewards

• First we need some definitions ...

Feasible Payoff Profiles

- A payoff profile $\mathbf{r} = (r_1, r_2, ..., r_n)$ is **feasible** if it is a convex rational combination of *G*'s possible outcomes
 - > i.e., for every action profile \mathbf{a}_j there is a rational nonnegative number c_j such that $\sum_j c_j = 1$ and $\sum_j c_j \mathbf{u}(\mathbf{a}_j) = \mathbf{r}$

Keep repeating

this sequence:

Agent 1 Agent 2

C

D

D

C

C

C

C

D

• Intuitive meaning:

There's a finite sequence of action profiles for which the average reward profile is r

• Example: in the Prisoner's Dilemma,

u(C,C) = (3,3)u(D,C) = (5,0)u(D,D) = (1,1)

> $\frac{1}{4}$ u(C,C) + $\frac{1}{2}$ u(C,D) + $\frac{1}{4}$ u(D,C) + 0 u(D,D) = (8/4, 13/4)

• so (2, 13/4) is feasible

> (5,5) isn't feasible; no convex combination can produce it

> $(\pi/2, \pi/2)$ isn't feasible; no rational convex combination can produce it

Enforceable Payoff Profiles

- A payoff profile $\mathbf{r} = (r_1, ..., r_n)$ is **enforceable** if for each *i*,
 - > $r_i \ge$ player *i*'s minimax value in *G*
- Intuitive meaning:
 - > If *i* deviates from the sequence of action profiles that produces **r**, the other agents can punish *i* by reducing *i*'s average reward to $\leq i$'s minimax value
- The other agents can do this by using grim trigger strategies:
 - Generalization of the Grim strategy
 - If any agent *i* deviates from the sequence of actions it is supposed to perform, then the other agents punish *i* forever by playing their minimax strategies against *i*

The Theorem

Theorem: If G is infinitely repeated game with average rewards, then

- > If there's a Nash equilibrium with payoff profile \mathbf{r} , then \mathbf{r} is enforceable
- If r is both feasible and enforceable, then there's a Nash equilibrium with payoff profile r

Summary of the proof:

- **Part 1**: Use the definitions of minimax and best-response to show that in every equilibrium, each agent *i*'s average payoff $\geq i$'s minimax value
- Part 2: Show how to construct a Nash equilibrium that gives each agent *i* an average payoff r_i
 - > The agents are grim-trigger strategies that cycle in lock-step through a sequence of game outcomes $\mathbf{r}^{(1)}$, $\mathbf{r}^{(2)}$, ..., $\mathbf{r}^{(n)}$ such that $\mathbf{r} = \mathbf{u}(\mathbf{r}^{(1)}) + \mathbf{u}(r^{(2)}) + ... + \mathbf{u}(r^{(n)})$
 - No agent can do better by deviating, because the others will punish it
 => Nash equilibrium

Iterated Prisoner's Dilemma

- For a finitely iterated game with a large number of iterations, the practical effect can be roughly the same as if it were infinite
- E.g., the Iterated Prisoner's Dilemma
- Widely used to study the emergence of cooperative behavior among agents
 - e.g., Axelrod (1984),
 The Evolution of Cooperation
- Axelrod ran a famous set of tournaments
 - People contributed strategies encoded as computer programs
 - Axelrod played them against each other

TFT with Other Agents

• In Axelrod's tournaments, TFT usually did best

- » It could establish and maintain cooperations with many other agents
- » It could prevent malicious agents from taking advantage of it

	AllC, TFT,				
TFT	or Pavlov	TFT	AllD	TFT	Tester
С	С	С	D	С	D
С	С	D	D	D	С
С	С	D	D	C	С
С	С	D	D	С	С
С	С	D	D	С	С
С	С	D	D	C	С
С	С	- D	D	C	С
	16. A.L.	:	: : :		

Example:

• A real-world example of the IPD, described in Axelrod's book:

> World War I trench warfare

- Incentive to cooperate:
 - > If I attack the other side, then they'll retaliate and I'll get hurt
 - > If I don't attack, maybe they won't either
- Result: evolution of cooperation
 - Although the two infantries were supposed to be enemies, they avoided attacking each other

Summary

- Topics covered:
 - Finitely repeated games
 - Infinitely repeated games
 - > Evolution of cooperation