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Introduction

 All the kinds of games we’ve looked at so far have assumed that everything 

relevant about the game being played is common knowledge to all the 

players:

 the number of players

 the actions available to each

 the payoff vector associated with each action vector 

 True even for imperfect-information games 

 The actual moves aren’t common knowledge, but the game is 

 We’ll now consider games of incomplete (not imperfect) information

 Players are uncertain about the game being played 



Example
 Consider the payoff matrix shown here

 e is a small positive constant; Agent 1 knows its value

 Agent 1 doesn’t know the values of a, b, c, d

 Thus the matrix represents a set of games

 Agent 1 doesn’t know which of these games

is the one being played

 Agent 1 wants a strategy that makes sense despite this lack of knowledge

 If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a 

maxmin, or “safety level,” strategy

• minimum payoff of T is 1–e

• minimum payoff of B is 1

 So agent 1’s maxmin strategy is B 



Bayesian Games

 Suppose we know the set G of all possible games and we have enough 

information to put a probability distribution over the games in G

 A Bayesian Game is a class of games G that satisfies two fundamental 

conditions

 Condition 1:

 The games in G have the same number of agents, and the same strategy 

space (set of possible strategies) for each agent. The only difference is 

in the payoffs of the strategies.

 This condition isn’t very restrictive

 Other types of uncertainty can be reduced to the above, by 

reformulating the problem



Example

 Suppose we don’t know whether player 2 only has strategies L and R, or also an 

additional strategy C:

Game G1 Game G2

 If player 2 doesn’t have strategy C, this is equivalent to having a strategy C that’s 

strictly dominated by other strategies:

Game G1'

 The Nash equilibria for G1'  are the same as the Nash equilibria for G1

 We’ve reduced the problem to whether C’s payoffs are those of G1' or G2



Bayesian Games

 Condition 2 (common prior):

 The probability distribution over the games in G is common knowledge 

(i.e., known to all the agents) 

 So a Bayesian game defines

 the uncertainties of agents about the game being played, 

 what each agent believes the other agents believe about the game being 

played

 The beliefs of the different agents are posterior probabilities

 Combine the common prior distribution with individual “private 

signals” (what’s “revealed” to the individual players)

 The common-prior assumption rules out whole families of games

 But it greatly simplifies the theory, so most work in game theory uses it

 There are some examples of games that don’t satisfy Condition 2



Definitions of Bayesian Games
 The book discusses three different ways to define Bayesian games 

 All are 

• equivalent (ignoring a few subtleties) 

• useful in some settings

• intuitive in their own way

 The first definition (Section 7.1.1) is based on information sets

 A Bayesian game consists of 

 a set of games that differ only in their payoffs 

 a common (i.e., known to all players) prior distribution over them 

 for each agent, a partition structure (set of information sets) over the games

 Formal definition on the next page



7.1.1  Definition based on Information Sets

 A Bayesian game is a 4-tuple (N,G,P,I) 

where:

 N is a set of agents

 G is a set of N-agent games 

 For every agent i, every game in G

has the same strategy space

 P is a common prior over G

• common: common knowledge 

(known to all the agents)

• prior: probability before 

learning any additional info

 I = (I1, …, IN) is a tuple of 

partitions of G, one for each agent

• Information sets

 Example:

G = {Matching Pennies (MP), 

Prisoner’s Dilemma (PD), 

Coordination (Crd), 

Battle of the Sexes (BoS)}

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

I1,1

I2,1 I2,2

I1,2



Example (Continued)

 G = {Matching Pennies (MP), 

Prisoner’s Dilemma (PD),

Coordination (Crd), 

Battle of the Sexes (BoS)}

 Suppose the randomly chosen

game is MP

 Agent 1’s information set is I1,1

 1 knows it’s MP or PD

 1 can infer posterior probabilities

for each

Pr[MP I1,1]=
Pr[MP]

Pr[MP]+ Pr[PD]
=

0.3

0.3+ 0.1
=

3

4

Pr[MP I2,1]=
Pr[MP]

Pr[MP]+ Pr[CrD]
=

0.3

0.3+ 0.2
=

3

5

 Agent 2’s information set is I2,1

Pr[PD I1,1]=
Pr[PD]

Pr[MP]+ Pr[PD]
=

0.1

0.3+0.1
=

1

4

Pr[Crd I2,1]=
Pr[Crd]

Pr[MP]+ Pr[CrD]
=

0.2

0.3+0.2
=

2

5

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

I1,1

I2,1 I2,2

I1,2



7.1.2  Extensive Form with Chance Moves

 Extensive form with Chance Moves

 The book gives a description, but not a formal definition

 Hypothesize a special agent, Nature

 Nature has no utility function

 At the start of the game, Nature makes a probabilistic choice according to 

the common prior 

 The agents receive individual signals about Nature’s choice

 Some of Nature’s choices are “revealed” to some players, others to other 

players

 The players receive no other information

• In particular, they cannot see each other’s moves



Nature

Example

 Same example as before, but

translated into extensive form

 Nature randomly chooses MP,

sends signal I1,1 to Agent 1,

sends signal I2,1 to Agent 2

Crd

p=0.2

MP (p=0.3)

PD

p=0.1

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

I1,1

I2,1 I2,2

I1,2



Extensions

 The definition in section 7.1.2 can be extended to include the following:

 Players sometimes get information about each other’s moves

 Nature makes choices and sends signals throughout the game

 This allows us to model Backgammon and Bridge



Bridge

 At the start of the game, Nature makes

one move

 The deal of the cards

 Nature signals to each player what

that player’s cards are

 Each player can always see

the other players’ moves

 But imperfect information,

since the players can’t see

each others’ hands

West

North

East

South

6
2

8
Q

Q

J
6

5



9

7

A

K

5

3

A

9





Backgammon

 Nature makes choices throughout the game

 The random outcomes of the dice rolls

 Nature reveals its choices to both players

 Both players can

see the dice

 Both players always see

each other’s moves of checkers

 Hence, perfect

information



7.1.3  Definition Based on Epistemic Types
 Epistemic types

 Recall that we can assume the only thing players are uncertain about is the 

game’s utility function 

 Thus we can define uncertainty directly over a game’s utility function

 Definition 7.1.2: a Bayesian game is a tuple (N, A, , p, u) where:

 N is a set of agents;

 A = A1×… × An , where Ai is the set of actions available to player i ;

  = 1×… × n , where i is the type space of player i ;

 p :  [0, 1] is a common prior over types; and

 u = (u1, . . . , un ), where ui : A×   is the utility function for player i

 All this is common knowledge among the players

 And each agent knows its own type



Types

 An agent’s type consists of all the information it has that isn’t common 

knowledge, e.g.,

 The agent’s actual payoff function 

 The agent’s beliefs about other agents’ payoffs, 

 The agent’s beliefs about their beliefs about his own payoff

 Any other higher-order beliefs



Example

 Agent 1’s possible types: θ1,1 and θ1,2

 1’s type is θ1, j 1’s info set is I1, j

 Agent 2’s possible types: θ2,1 and θ2,2

 2’s type is θ2, j 2’s info set is I2, j

 Joint distribution on the types:

Pr[θ1,1, θ2,1] = 0.3;    Pr[θ1,1, θ2,2] = 0.1

Pr[θ1,2, θ2,1] = 0.2;    Pr[θ1,2, θ2,2] = 0.4

 Conditional probabilities for agent 1:

 Pr[θ2,1 | θ1,1] = 0.3/(0.3 + 0.1) = 3/4;    Pr[θ2,2 | θ1,1] = 0.1/(0.3 + 0.1) = 1/4

 Pr[θ2,1 | θ1,2] = 0.2/(0.2 + 0.4) = 1/3;    Pr[θ2,2 | θ1,2] = 0.4/(0.2 + 0.4) = 2/3

θ1,1

θ2,1 θ2,2

θ1,2

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2



Example (continued)

 The players’ payoffs depend on both 

their types and their actions

 The types determine what game it is

 The actions determine the payoff 

within that game

θ1,1

θ2,1 θ2,2

θ1,2

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2



Strategies
 In principle, we could use any of the three definitions of a Bayesian game

 The book uses the 3rd one (epistemic types)

 Strategies are similar to what we had in imperfect-information games

 A pure strategy for player i maps each of i’s types to an action 

• what i would play if i had that type 

 A mixed strategy si is a probability distribution over pure strategies

• si(ai | j) = Pr[i plays action aj | i’s type is j]

 Three kinds of expected utility: ex post, ex interim, and ex ante

 Depend on what we know about the players’ types

 We mainly consider ex ante in this class (which is simpler than others)

 A type profile is a vector  = (1, 2, …, n) of types, one for each agent

 –i = (1, 2, …, i–1, i+1, …, n)

  = (i, –i)



Expected Utility

 Three different kinds of expected utility, depending on what we know about 

the agents’ types

 If we know every agent’s type (i.e., the type profile )

 agent i’s ex post expected utility:

 If we only know the common prior

 agent i’s ex ante 

expected utility:

 If we know the type i of one agent i, but not the other agents’ types

 i’s ex interim

expected utility:



Bayes-Nash Equilibria

 Given a strategy profile s–i , a best response for agent i is a strategy si such 

that

si  arg max(EUi (s'i , s–i))

s'i

 Above, the set notation is because more than one strategy may produce the 

same expected utility

 A Bayes-Nash equilibrium is a strategy profile s such that for every si in s, 

si is a best response to s–i

 Just like the definition of a Nash equilibrium, except that we’re using 

Bayesian-game strategies



Computing Bayes-Nash Equilibria

 The idea is to construct a payoff 

matrix for the entire Bayesian game, 

and find equilibria on that matrix

 First, write each of the pure strategies 

as a list of actions, one for each type

 Agent 1’s pure strategies:

 UU:  U if type θ1,1 , U if type θ1,2

 UD:  U if type θ1,1 , D if type θ1,2

 DU:  D if type θ1,1 , U if type θ1,2

 DD:  D if type θ1,1 , D if type θ1,2

 Agent 2’s pure strategies:

 LL:  L if type θ2,1 , L if type θ2,2

 LR:  L if type θ2,1 , R if type θ2,2

 RL:  R if type θ2,1 , L if type θ2,2

 RR:  R if type θ2,1 , R if type θ2,2

θ1,1

θ2,1 θ2,2

θ1,2

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2



Computing Bayes-Nash Equilibria (continued)

 Next, compute the ex ante expected utility for each pure-strategy profile

 e.g., (note that 𝜃 , UU, and LL determine dots)

   

1

)1(4.0)2(2.0)2(1.0)0(3.0

),,,(],Pr[

),,,(],Pr[

),,,(],Pr[

),,,(],Pr[

.,.,] Pr[,

2,22,122,22,1

1,22,121,22,1

2,21,122,21,1

1,21,121,21,1

22























LUu

LUu

LUu

LUu

uLLUUEU




MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

θ1,1

θ2,1 θ2,2

θ1,2



Computing Bayes-Nash Equilibria (continued)

 Put all of the ex ante expected utilities into a payoff matrix

 e.g., EU2(UU,LL) = 1

 Now we can compute best 

responses and Nash equilibria

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

θ1,1

θ2,1 θ2,2

θ1,2



Summary

 Incomplete information vs. imperfect information

 Incomplete information vs. uncertainty about payoffs

 Bayesian games (three different definitions)

 Changing uncertainty about games into uncertainty about payoffs

 Ex ante, ex interim, and ex post utilities

 Bayes-Nash equilibria

 Bayesian-game interpretations of Bridge and Backgammon

 Base-Nash instead of Nash


