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Introduction

e All the kinds of games we’ve looked at so far have assumed that everything
relevant about the game being played is common knowledge to all the
players:

> the number of players

> the actions available to each

> the payoff vector associated with each action vector
e True even for imperfect-information games

» The actual moves aren’t common knowledge, but the game is

e We’ll now consider games of incomplete (not imperfect) information
> Players are uncertain about the game being played



Example

Consider the payoff matrix shown here

> ¢ Is a small positive constant; Agent 1 knows its value
Agent 1 doesn’t know the values of a, b, ¢, d

> Thus the matrix represents a set of games

> Agent 1 doesn’t know which of these games
IS the one being played

T

100. a

1 —€,b

b2

Agent 1 wants a strategy that makes sense despite this lack of knowledge

If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a

maxmin, or “safety level,” strategy
« minimum payoff of T is 1-¢
* minimum payoffof Bis 1
> So agent 1°s maxmin strategy is B




Bayesian Games

Suppose we know the set G of all possible games and we have enough
Information to put a probability distribution over the games in G

A Bayesian Game is a class of games G that satisfies two fundamental
conditions

Condition 1;

> The games in G have the same number of agents, and the same strategy
space (set of possible strategies) for each agent. The only difference is
In the payoffs of the strategies.

This condition isn’t very restrictive

> Other types of uncertainty can be reduced to the above, by
reformulating the problem



Example

Suppose we don’t know whether player 2 only has strategies L and R, or also an
additional strategy C:

L R i c R
Game G, v | 1.1 | 1.3 v | 11 | 02 | 1.3 | GameG,
p| o5 | 113 p| o5 | 28 | 113

If player 2 doesn’t have strategy C, this is equivalent to having a strategy C that’s
strictly dominated by other strategies:

I C R
Game G;" ;| 1.1 |o.-100| 1.3
p |l 05 |2.-10]| 113

> The Nash equilibria for G,' are the same as the Nash equilibria for G,

We’ve reduced the problem to whether C’s payoffs are those of G," or G,



Bayesian Games

Condition 2 (common prior):

> The probability distribution over the games in G is common knowledge
(i.e., known to all the agents)

So a Bayesian game defines
> the uncertainties of agents about the game being played,

> what each agent believes the other agents believe about the game being
played

The beliefs of the different agents are posterior probabilities

» Combine the common prior distribution with individual “private
signals” (what’s “revealed” to the individual players)

The common-prior assumption rules out whole families of games
> But it greatly simplifies the theory, so most work in game theory uses it

There are some examples of games that don’t satisfy Condition 2



Definitions of Bayesian Games

e® The book discusses three different ways to define Bayesian games
> All are
» equivalent (ignoring a few subtleties)
« useful in some settings
e intuitive in their own way

e The first definition (Section 7.1.1) is based on information sets
e A Bayesian game consists of

> a set of games that differ only in their payoffs

> acommon (i.e., known to all players) prior distribution over them

> for each agent, a partition structure (set of information sets) over the games
e Formal definition on the next page



7.1.1 Definition based on Information Sets

® A Bayesian game is a 4-tuple (N,G,P,I) ® Example:

where: G = {Matching Pennies (MP),
» N is a set of agents Prisoner’s Dilemma (PD),
Coordination (Crd),

» G Is a set of N-agent games
g Battle of the Sexes (BoS)}

» For every agent i, every game in G

has the same strategy space 54 5,
» P isacommon prior over G MP (p = 0.3) PD (p=0.1)
e common: common knowledge L R L R
(known to all the agents) hilul20]o2ll|ul22T03
- prior: probability before D102 |20 fIp|30]|11
learning any additional info Crd (p=0.2) BoS (p = 0.4)
> 1=(, ..., 1) isatuple of L R L R
partitions of G, one for each agent Ul 22100 ul21| 00
« Information sets D00 |11 D|{0,0| 1,2




Example (Continued)

: : ® Agent 2’s infi t1 tis |
® G = {Matching Pennies (MP), Ry O, e N o

Prisoner’s Dilemma (PD), PrIMP|7,,]= PriMP. = @S e
Coordination (Crd), " Pr[MP]+Pr[CrD] 0.3+0.2
Battle of the Sexes (BoS)} Crd]
pr[Crdl,,]= Pr_Crd__ & 00:2 %5
e Suppose the randomly chosen " Pr[MP]+Pr[CrD] 0.3+0.2
game is MP
® Agent I’s information set is | , 54 5,
> 1 knows it’s MP or PD MP (p = 0.3) PD (p=0.1)
> 1 can infer posterior probabilities L R L R
for each bhilul20]o2]l|ul22T03
PriMPlr 1= PIMPL . 03 3 Lt
"% Pr[MP]+Pr[PD] 0.3+0.1 4 Crd (p=0.2) BoS (p = 0.4)
; L R L R
Pr[PD|L,,]= AEDRE Ty 500 R ul22]o0]llul21] o0
’ PF[MP + PF[PD] 0.3+0.1 4 D | 0,0 1.1 D|0,0 1,2




7.1.2 Extensive Form with Chance Moves

e Extensive form with Chance Moves

> The book gives a description, but not a formal definition
e Hypothesize a special agent, Nature
e Nature has no utility function

> At the start of the game, Nature makes a probabilistic choice according to
the common prior

e The agents receive individual signals about Nature’s choice

> Some of Nature’s choices are “revealed” to some players, others to other
players

> The players receive no other information

e In particular, they cannot see each other’s moves



I2,1 I2,2
Example MP (p=0.9) PD (p=01)
L R L R
|
e Same example as before, but 111U 120102 fjlu|22]|03
translated into extensive form D102/ 20 D| 3011
> Nature randomly chooses MP, Crd (p=0.2) BoS (p = 0.4)
sends signal |, , to Agent 1, L R L R
sends signal |, to Agent 2 bolul 2200 lllul21] o0
D|o0| 11| [D|0o0O] 1,2
Nature
MP (p=0.3) BoS
PD Crd
Wy s <og” p=0.1 p=0.2 S
U D U/ \D U D U D
2 ““““ ‘2 ------------------- ..2-‘ ..... 2 -------- 2
Li\R Li/\R L/ \BR Lif\R Ly \BR L&/ \B L/ \R L/ \R

(2,0) (0,2) (0,2) (2,0) (2,2) (0,3) (3,0) (1,1) (2,2) (0,0) (0,0) (1,1) (2,1)(0,0) (0,0) (1,2)




Extensions

e The definition in section 7.1.2 can be extended to include the following:
> Players sometimes get information about each other’s moves
> Nature makes choices and sends signals throughout the game

e This allows us to model Backgammon and Bridge



Bridge

e At the start of the game, Nature makes
one move North

> The deal of the cards 0| (+9 [44] IOA
_ *J | (|[+7 (| AK] ||[9
e Nature signals to each player what
that player’s cards are

e Each player can always see

the other players’ moves West East
» But imperfect information, [ ] A6 E A8 [ ]
since the players can’t see AQ
each others’ hands

South




Backgammon

Nature makes choices throughout the game
> The random outcomes of the dice rolls
Nature reveals its choices to both players
> Both players can Lo 3 B
see the dice :
Both players always see B
each other’s moves of checkers @,
Hence, perfect 1190 15 &5
Information MIN @ ) ()
DICE . .
1/36 1/18 1/18 1/36
1,1 1, 6,5 6,6
MAX -8 .

TERMINAL 2 -1 1 -1



7.1.3 Definition Based on Epistemic Types

e Epistemic types

> Recall that we can assume the only thing players are uncertain about is the
game’s utility function

» Thus we can define uncertainty directly over a game’ s utility function

e Definition 7.1.2: a Bayesian game is a tuple (N, A, ©, p, u) where:
> N is a set of agents;
> A=A, X ... X A, where A Is the set of actions available to player i ;
> ®@=0; X ... X 0., where 0, Is the type space of playeri ;
> p:® — [0, 1] is a common prior over types; and
> U= (U, ...,u ), whereu;: A X ® — R is the utility function for player i

e All this is common knowledge among the players

> And each agent knows its own type



Types

® An agent’s type consists of all the information it has that isn’t common
knowledge, e.g.,

> The agent’s actual payoff function

> The agent’s beliefs about other agents’ payoffs,
> The agent’s beliefs about their beliefs about his own payoff
> Any other higher-order beliefs



Example

Agent 1’s possible types: 6, , and 0, ,
I’stypeis 0; ; < I’sinfosetis | ;

Agent 2’s possible types: 6,, and 6, ,
2’s type 1s (92,1- & 2’s info set i1s |2,j

Joint distribution on the types:
Pr[0,,,0,,]=0.3; Pr[6,,,0,,]=0.1
Pr[0,,, 0,,1=0.2; Pr[6,,,6,,]=0.4

Conditional probabilities for agent 1.
> Pr[o,,]6,,]=0.3/(0.3 +0.1) = 3/4;
> Pr[o,,]6,,]=0.2/(0.2+0.4) = 1/3;

(92,1 (92,2
MP (p=0.3) PD (p=0.1)
p L R L R
11 u 2.0 0,2 U 2.2 103
D| 02| 20 D| 30|11
Crd (p=0.2) ' BoS (p=0.4)
L R L R
Uulz22100 ul21| 0,0
D|oo0| 11 D|0,0| 1,2

Pr[6,, | 6,,]=0.1/(0.3+0.1) = 1/4
Pr[6,, | 6,,] = 0.4/(0.2 + 0.4) = 2/3




Example (continued)

® The players’ payoffs depend on both
their types and their actions

> The types determine what game it is

> The actions determine the payoff
within that game

92,1 (92,2
MP (p =0.3) PD (p=0.1)
L R L R
(91’1 U 2,0 | 0,2 Uulz22103
D02 20 DI 30|11
Crd (p=0.2) BoS(p=04)
L R L R

a1 a4 o 1 U9
U L #1 624 2 0
U L #1 a5 2 2
u L o #Ha3 2 2
u L 89 #as 2 1
U R #1 631 0 2
U R #11 oo 0 3
(8] R #1s #y 0 0
U R #9 6Hon 0 0
D L 6,1 627 O 2
D L #11 Has 3 0
D L 62 63 O 0
D L #15 #s9 0 0
D R #1 621 2 0
D R 611 6o 1 1
D R #6152 fp 1 1
D R #i2 #22 1 2

2,2 100 uil21| 00

U
D 0,0 1,1 D00 1,2
i - i




Strategies

e In principle, we could use any of the three definitions of a Bayesian game
> The book uses the 3 one (epistemic types)
e Strategies are similar to what we had in imperfect-information games
> A pure strategy for player i maps each of I’s types to an action
 what 1 would play if i had that type
> A mixed strategy s; IS a probability distribution over pure strategies
* si(a; | ) = Pr[i plays action & | I’s type is 6]

e Three kinds of expected utility: ex post, ex interim, and ex ante
» Depend on what we know about the players’ types
e We mainly consider ex ante in this class (which is simpler than others)
e A type profile is a vector @ = (4, 6,, ..., 8,) of types, one for each agent
> 0.=(6,6,..,6,6,,...6)
> 0=(6,0



Expected Utility

Three different kinds of expected utility, depending on what we know about

the agents’ types

If we know every agent’s type (i.e., the type profile 6)

> agent iI’s ex post expected utility:

If we only know the commo

> agent i’s ex ante
expected utility: ~ EU,(s)

a \JEN

[EU(se}EPr[mSe]u(ae) E(HS a, |9)) (a,8)

1|EU, (s.0)|= ¥ Pr{6,] EU,(s.6,)

If we know the type & of one agent i, but not the ather agents’ types

> I’s ex Interim
expected utility: EU s 0

EPr[B |9][EU( (Bi,B_i))]




Bayes-Nash Equilibria

e Given a strategy profile s ; , a best response for agent 1 Is a strategy s; such
that
s, € arg max(EU; (s';, s.;))

S

® Above, the set notation is because more than one strategy may produce the
same expected utility

e A Bayes-Nash equilibrium is a strategy profile s such that for every s; in s,
S; IS a best response to s ;

> Just like the definition of a Nash equilibrium, except that we’re using
Bayesian-game strategies



e® The idea is to construct a payoff

Computing Bayes-Nash Equilibria

matrix for the entire Bayesian game,

and find equilibria on that matrix

e First, write each of the pure strategies
as a list of actions, one for each type

® Agent 1’s pure strategies:

92,1 92,2
MP (p=0.3) PD (p=0.1)
L R L R
(91’1 U 2,0 0,2 U 2.2 10,3
D|02] 20 D | 3011
Crd (p=0.2) BoS (p =0.4)
L R L R
U 2,2 | 0,0 Ul21l 0,0
D| 00| 11 D|0,0 1,2

> UU:
> UD:
> DU:
> DD:

> LL:
> LR:
> RL:
> RR:

U if type 6, )
U if type 0, ,
D if type 0, ,

\D If type 91)

(U if type 6, ,
/D if type 0, ,
U if type 6, ,
D if type 0, ,

® Agent 2’s pure strategies:

( If type 92},

L if type 60, |,
R if type 0, .|,

fif type 92)
R if type 0,
L if type 0,,

\Rif type 6, /,

R if type 6, )




Computing Bayes-Nash Equilibria (continued)

e Next, compute the ex ante expected utility for each pure-strategy profile

> e.g., (note that 8 , UU, and LL determine dots)
EU,(UU, LL)= ZPr[O]u ,0)

= Pr[el,l’QZ,l]UZ(U y L1 91,1’ 92,1)

01 05 5 +Pr[é,,,0,,Ju,U,L,6,,,6,,)
MP (p = 0.3) PD (p=0.1) ' +Pr[o,,,0,,]u,(U,L,0,,,6,,)
P R L R | +Prl[é,,.6,,]u,U,L.,0,,,6,,)
Pul2)ozfl |u|22) o Z0.3(0) +0.1(2) + 0.2(2) + 0.4(1)
D[0,2]20 D 30|11 i7,
|
Crd (p=0.2) BoS (p =0.4)
L R L R
u | 2(2) 0,0 ul2(1)oo0
D|0,0]|11 D (0,012




Computing Bayes-Nash Equilibria (continued)

e Put all of the ex ante expected utilities into a payoff matrix

> e.g., EU,(UU,LL) = 1

e Now we can compute best
responses and Nash equilibria

92,1 (92,2

MP (p =0.3) PD (p=0.1)

: L R L R
M u | 2(0) 0,2 u | 22)| 03
D 0,220 D {3,011

Crd (p=0.2) BoS (p =0.4)

L R L R
U |2(2) 00 ul2(1)oo0
D [0,0(11 D (0,012

o

Uu

UD

DU

DD

IL LR RL RR
\;@ 1,07 (1,12 0,00
0.8,02 1,1.1 | 04,1 0.6, 1.9
1.5, 1.4[0.5, 1.1{1.7, 0.4 [0.7, 0.1
0.3,0.6(0.5, 15[1.1, 0.2{1.3, 1.1




Summary

Incomplete information vs. imperfect information
Incomplete information vs. uncertainty about payoffs
Bayesian games (three different definitions)
> Changing uncertainty about games into uncertainty about payoffs
> Ex ante, ex interim, and ex post utilities
> Bayes-Nash equilibria
Bayesian-game interpretations of Bridge and Backgammon
Base-Nash instead of Nash



