CMSC 474, Introduction to Game Theory

19. Coalition Game Theory

Mohammad T. Hajiaghayi University of Maryland

Coalitional Games with Transferable Utility

- Given a set of agents, a coalitional game defines how well each group (or **coalition**) of agents can do for itself—its payoff
 - Not concerned with
 - how the agents make individual choices within a coalition,
 - how they coordinate, or
 - any other such detail
- **Transferable utility** assumption: the payoffs to a coalition may be freely redistributed among its members
 - Satisfied whenever there is a universal currency that is used for exchange in the system
 - > Implies that each coalition can be assigned a single value as its payoff

Coalitional Games with Transferable Utility

- A coalitional game with transferable utility is a pair G = (N, v), where
 - > N = $\{1, 2, ..., n\}$ is a finite set of players
 - > (nu) $v: 2^N \to \Re$ associates with each coalition $S \subseteq N$ a real-valued payoff v(S), that the coalition members can distribute among themselves
- *v* is the characteristic function
 - > We assume $v(\emptyset) = 0$
- A coalition's payoff is also called its worth
- Coalitional game theory is normally used to answer two questions:
 (1) Which coalition will form?

(2) How should that coalition divide its payoff among its members?

- The answer to (1) is often "the grand coalition" (all of the agents)
 - > But this answer can depend on making the right choice about (2)

Example: A Voting Game

• Consider a parliament that contains 100 representatives from four political parties:

> A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.)

- They're going to vote on whether to pass a \$100 million spending bill (and how much of it should be controlled by each party)
- Need a majority (\geq 51 votes) to pass legislation
 - > If the bill doesn't pass, then every party gets 0
- More generally, a voting game would include
 - \succ a set of agents N
 - > a set of winning coalitions $W \subseteq 2^N$
 - In the example, all coalitions that have enough votes to pass the bill
 - $\succ v(S) = 1$ for each coalition $S \in W$
 - Or equivalently, we could use v(S) = \$100 million
 - $\succ v(S) = 0$ for each coalition $S \notin W$

Superadditive Games

• A coalitional game G = (N, v) is **superadditive** if the union of two disjoint coalitions is worth at least the sum of its members' worths

> for all *S*, *T* ⊆ *N*, if *S* ∩ *T* = Ø, then $v(S \cup T) \ge v(S) + v(T)$

- The voting-game example is superadditive
 - ➤ If $S \cap T = \emptyset$, v(S) = 0, and v(T) = 0, then $v(S \cup T) \ge 0$
 - > If $S \cap T = \emptyset$ and v(S) = 1, then v(T) = 0 and $v(S \cup T) = 1$

> Hence $v(S \cup T) \ge v(S) + v(T)$

- If G is superadditive, the grand coalition always has the highest possible payoff
 - > For any $S \neq N$, $v(N) \ge v(S) + v(N-S) \ge v(S)$
- G = (N, v) is additive (or inessential) if
 - For *S*, $T \subseteq N$ and $S \cap T = \emptyset$, then $v(S \cup T) = v(S) + v(T)$

Constant-Sum Games

- *G* is **constant-sum** if the worth of the grand coalition equals the sum of the worths of any two coalitions that partition *N*
 - v(S) + v(N S) = v(N), for every $S \subseteq N$

• Every additive game is constant-sum

> additive => $v(S) + v(N-S) = v(S \cup (N-S)) = v(N)$

• But not every constant-sum game is additive

Example is a good exercise

Convex Games

• *G* is **convex (supermodular)** if for all $S, T \subseteq N$,

• $v(S \cup T) + v(S \cap T) \ge v(S) + v(T)$

• It can be shown the above definition is equivalent to for all *i* in N and for all $S \subseteq T \subseteq N$ -{*i*},

 $\succ v(\mathsf{T} \cup \{i\}) - v(\mathsf{T}) \ge v(S \cup \{i\}) - v(S)$

Prove it as an exercise

• Recall the definition of a superadditive game:

▶ for all $S, T \subseteq N$, if $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$

• It follows immediately that every super-additive game is a convex game

Simple Coalitional Games

- A game G = (N, v) is simple for every coalition S,
 - either v(S) = 1 (i.e., S wins) or v(S) = 0 (i.e., S loses)
 - > Used to model voting situations (e.g., the example earlier)
- Often add a requirement that if S wins, all supersets of S would also win:
 - if v(S) = 1, then for all $T \supseteq S$, v(T) = 1
- This doesn't quite imply superadditivity
 - Consider a voting game G in which 50% of the votes is sufficient to pass a bill
 - > Two coalitions S and T, each is exactly 50% N
 - $\succ v(S) = 1$ and v(T) = 1
 - > But $v(S \cup T) \neq 2$

Proper-Simple Games

• G is a **proper simple game** if it is both simple and constant-sum

- > If S is a winning coalition, then N S is a losing coalition
 - v(S) + v(N S) = 1, so if v(S) = 1 then v(N S) = 0

• Relations among the classes of games:

 $\{Additive games\} \subseteq \{Super-additive games\} \subseteq \{Convex games\} \\ \{Additive games\} \subseteq \{Constant-sum game\} \\ \{Proper-simple games\} \subseteq \{Constant-sum games\} \\ \{Proper-simple games\} \subseteq \{Simple game\} \\ \{Simple game\} \\$

Analyzing Coalitional Games

- Main question in coalitional game theory
 - > How to divide the payoff to the grand coalition?
- Why focus on the grand coalition?
 - > Many widely studied games are super-additive
 - Expect the grand coalition to form because it has the highest payoff
 - Agents may be required to join
 - E.g., public projects often legally bound to include all participants

• Given a coalitional game G = (N, v), where $N = \{1, ..., n\}$

- > We'll want to look at the agents' shares in the grand coalition's payoff
 - The book writes this as (**Psi**) $\psi(N,v) = \mathbf{x} = (x_1, ..., x_n)$, where $\psi_i(N,v) = x_i$ is the agent's payoff
- > We won't use the ψ notation much
 - Can be useful for talking about several different coalitional games at once, but we usually won't be doing that

Terminology

Feasible payoff set

- = {all payoff profiles that don't distribute more than the worth of the grand coalition}
- $= \{ (x_1, \dots, x_n) \mid x_1 + x_2 + \dots + x_n \} \le v(N)$

Pre-imputation set

P = {feasible payoff profiles that are efficient, i.e., distribute the entire
worth of the grand coalition}

$$= \{ (x_1, ..., x_n) \mid x_1 + x_2 + ... + x_n \} = v(N)$$

Imputation set

C = {payoffs in P in which each agent gets
 at least what he/she would get by going
 alone (i.e., forming a singleton coalition)}

$$= \{ (x_1, \dots, x_n) \in \mathcal{P} : \forall i \in N, x_i \ge v(\{i\}) \}$$

im•pute: verb [trans.]
represent as being done,
caused, or possessed by
someone; attribute : the
crimes imputed to Richard.

Fairness, Symmetry

- What is a **fair** division of the payoffs?
 - > Three axioms describing fairness
 - Symmetry, dummy player, and additivity axioms

- Definition: agents *i* and *j* are **interchangeable** if they always contribute the same amount to every coalition of the other agents
 - > i.e., for every S that contains neither i nor j, $v(S \cup \{i\}) = v(S \cup \{j\})$
- **Symmetry axiom**: in a fair division of the payoffs, interchangeable agents should receive the same payments, i.e.,
 - if *i* and *j* are interchangeable and (x₁, ..., x_n) is the payoff profile, then
 x_i = x_j

Dummy Players

- Agent *i* is a **dummy player** if *i*'s contributes to any coalition is exactly the amount *i* can achieve alone
 - > i.e., for all S s.t. $i \notin S$, $v(S \cup \{i\}) = v(S) + v(\{i\})$
- **Dummy player axiom**: in a fair distribution of payoffs, dummy players should receive payment equal to the amount they achieve on their own
 - i.e., if *i* is a dummy player and (x₁, ..., x_n) is the payoff profile, then x_i = v({i})

Additivity

- Let $G_1 = (N, v_1)$ and $G_2 = (N, v_2)$ be two coalitional games with the same agents
- Consider the combined game $G = (N, v_1 + v_2)$, where

> $(v_1 + v_2)(S) = v_1(S) + v_2(S)$

• Additivity axiom: in a fair distribution of payoffs for *G*, the agents should get the sum of what they would get in the two separate games

> i.e., for each player *i*, $\psi_i(N, v_1 + v_2) = \psi_i(N, v_1) + \psi_i(N, v_2)$