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Coalitional Games with Transferable Utility 

 Given a set of agents, a coalitional game defines how well each group (or 

coalition) of agents can do for itself—its payoff 

 Not concerned with 

• how the agents make individual choices within a coalition, 

• how they coordinate, or 

• any other such detail 

 Transferable utility assumption: the payoffs to a coalition may be freely 

redistributed among its members

 Satisfied whenever there is a universal currency that is used for 

exchange in the system 

 Implies that each coalition can be assigned a single value as its payoff



Coalitional Games with Transferable Utility 

 A coalitional game with transferable utility is a pair G = (N,v), where

 N = {1, 2, …, n} is a finite set of players

 (nu) v : 2N  associates with each coalition S ⊆ N a real-valued 

payoff v(S), that the coalition members can distribute among 

themselves

 v is the characteristic function

 We assume v() = 0

 A coalition’s payoff is also called its worth

 Coalitional game theory is normally used to answer two questions:

(1) Which coalition will form?

(2) How should that coalition divide its payoff among its members?

 The answer to (1) is often “the grand coalition” (all of the agents) 

 But this answer can depend on making the right choice about (2)



Example: A Voting Game

 Consider a parliament that contains 100 representatives from four political 

parties:

 A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.) 

 They’re going to vote on whether to pass a $100 million spending bill|

(and how much of it should be controlled by each party)

 Need a majority (≥ 51 votes) to pass legislation

 If the bill doesn’t pass, then every party gets 0 

 More generally, a voting game would include

 a set of agents N

 a set of winning coalitions W  2N

• In the example, all coalitions that have enough votes to pass the bill

 v(S) = 1 for each coalition S W

• Or equivalently, we could use v(S) = $100 million

 v(S) = 0 for each coalition S W



Superadditive Games

 A coalitional game G = (N,v) is superadditive if the union of two disjoint 

coalitions is worth at least the sum of its members’ worths

 for all S, T  N, if S  T = , then v (S ∪ T) ≥ v (S ) + v (T ) 

 The voting-game example is superadditive

 If S  T = , v(S) = 0, and v(T) = 0, then v(S ∪ T) ≥ 0

 If S  T =  and v(S) = 1, then v(T) = 0 and v(S ∪ T ) = 1

 Hence v(S ∪ T) ≥ v(S ) + v(T ) 

 If G is superadditive, the grand coalition always has the highest possible 

payoff

 For any S ≠ N,  v(N) ≥ v(S) + v(N–S) ≥ v(S)

 G = (N,v) is additive (or inessential) if

• For S, T  N and S  T = , then v(S ∪ T ) = v(S ) + v(T ) 



Constant-Sum Games

 G is constant-sum if the worth of the grand coalition equals the sum of the 

worths of any two coalitions that partition N

• v(S) + v(N – S) = v(N), for every S  N

 Every additive game is constant-sum

 additive  =>   v(S) + v(N – S) = v(S ∪(N – S)) = v(N)

 But not every constant-sum game is additive

 Example is a good exercise



Convex Games

 G is convex (supermodular) if for all S,T  N,

• v(S ∪ T) + v(S  T) ≥ v(S) + v(T)

 It can be shown the above definition is equivalent to for all i in N  and for 

all S  T  N-{i}, 

 v(T ∪ {i})- v(T) ≥ v(S ∪ {i}) - v(S)

 Prove it as an exercise

 Recall the definition of a superadditive game:

 for all S,T  N, if S  T = , then v (S ∪ T) ≥ v (S ) + v (T ) 

 It follows immediately that every super-additive game is a convex game



Simple Coalitional Games

 A game G = (N, v) is simple for every coalition S, 

• either v(S) = 1 (i.e., S wins) or v(S) = 0 (i.e., S loses)

 Used to model voting situations (e.g., the example earlier)

 Often add a requirement that if S wins, all supersets of S would also win:

• if v(S) = 1, then for all T ⊇ S, v(T) = 1

 This doesn’t quite imply superadditivity

 Consider a voting game G in which 50% of the votes is sufficient to 

pass a bill

 Two coalitions S and T, each is exactly 50% N

 v(S) = 1  and  v(T) = 1  

 But v(S  T) ≠ 2



Proper-Simple Games

 G is a proper simple game if it is both simple and constant-sum

 If S is a winning coalition, then N – S is a losing coalition

• v(S) + v(N – S) = 1, so if v(S) = 1 then v(N – S) = 0

 Relations among the classes of games:

{Additive games}  {Super-additive  games}  {Convex games}

{Additive games}  {Constant-sum game}

{Proper-simple games}  {Constant-sum games}

{Proper-simple games}  {Simple game}



Analyzing Coalitional Games
Main question in coalitional game theory

 How to divide the payoff to the grand coalition?

Why focus on the grand coalition? 

 Many widely studied games are super-additive

• Expect the grand coalition to form because it has the highest payoff

 Agents may be required to join

• E.g., public projects often legally bound to include all participants 

 Given a coalitional game G = (N, v), where N = {1, …, n}

 We’ll want to look at the agents’ shares in the grand coalition’s payoff 

• The book writes this as (Psi) ψ(N,v) = x = (x1, …, xn), where ψi(N,v)

= xi is the agent’s payoff

 We won’t use the ψ notation much

• Can be useful for talking about several different coalitional games at 

once, but we usually won’t be doing that



Terminology

 Feasible payoff set

= {all payoff profiles that don’t distribute more than the worth of the 

grand coalition}

= {(x1, …, xn) | x1 + x2 + … +  xn} ≤ v(N)

 Pre-imputation set

= {feasible payoff profiles that are efficient, i.e., distribute the entire 

worth of the grand coalition}

= {(x1, …, xn) | x1 + x2 + … +  xn} = v(N)

 Imputation set

= {payoffs in in which each agent gets

at least what he/she would get by going

alone (i.e., forming a singleton coalition)}

= {(x1, …, xn)  : i  N, xi ≥ v({i})}

im•pute:  verb [ trans. ]

represent as being done, 

caused, or possessed by 

someone; attribute : the 

crimes imputed to Richard.



Fairness, Symmetry

 What is a fair division of the payoffs?

 Three axioms describing fairness

• Symmetry, dummy player, and additivity axioms

 Definition: agents i and j are interchangeable if they always contribute the 

same amount to every coalition of the other agents

 i.e., for every S that contains neither i nor j , v(S ∪{i}) = v (S ∪{j})

 Symmetry axiom: in a fair division of the payoffs, interchangeable agents 

should receive the same payments, i.e.,

 if i and j are interchangeable and (x1, …, xn) is the payoff profile, then 

xi = xj



Dummy Players

 Agent i is a dummy player if i’s contributes to any coalition is exactly 

the amount i can achieve alone 

 i.e., for all S s.t. i ∉ S, v(S ∪ {i}) = v(S) + v({i})

 Dummy player axiom: in a fair distribution of payoffs, dummy players 

should receive payment equal to the amount they achieve on their own

 i.e., if i is a dummy player and (x1, …, xn) is the payoff profile, then 

xi = v({i})



Additivity

 Let G1 = (N, v1)  and  G2 = (N, v2)  be two coalitional games with the same 

agents

 Consider the combined game G = (N, v1 + v2), where

 (v1 + v2)(S) = v1(S) + v2(S)

 Additivity axiom: in a fair distribution of payoffs for G, the agents should 

get the sum of what they would get in the two separate games

 i.e., for each player i,  ψi(N, v1 + v2) = ψi(N, v1) + ψi(N, v2)


