CMSC 474, Introduction to Game Theory 20. Shapley Values

Mohammad T. Hajiaghayi
University of Maryland

Shapley Values

- Recall that a pre-imputation is a payoff division that is both feasible and efficient
- **Theorem.** Given a coalitional game (N,v), there's a unique pre-imputation $\varphi(N,v)$ that satisfies the Symmetry, Dummy player, and Additivity axioms. For each player i, i's share of $\varphi(N,v)$ is

$$\varphi_i(N,v) = \frac{1}{|N|!} \sum_{S \subseteq N - \{i\}} |S|! \ (|N| - |S| - 1)! \ (v(S \cup \{i\}) - v(S))$$

- $\varphi_i(N, v)$ is called i's **Shapley value**
 - Lloyd Shapley introduced it in 1953
- It captures agent i's average marginal contribution
 - The average contribution that *i* makes to the coalition, averaged over every possible sequence in which the grand coalition can be built up from the empty coalition

Shapley Values

- Suppose agents join the grand coalition one by one, all sequences equally likely
- Let $S = \{\text{agents that joined before } i\}$ and $T = \{\text{agents that joined after } i\}$
 - \triangleright i's marginal contribution is $v(S \cup \{i\}) v(S)$
 - independent of how S is ordered, independent of how T is ordered
 - \triangleright Pr[S, then i, then T]
 - = (# of sequences that include S then i then T) / (total # of sequences)
 - = |S|! |T|! / |N|!
- Let $\varphi_{i,S} = \Pr[S, \text{ then } i, \text{ then } T] \times i$'s marginal contribution when it joins
- Then $f_{i,S} = \frac{|S|!(|N|-|S|-1)!}{|N|!}(v(S \succeq \{i\}) v(S))$
- Let $\varphi_i(N, v)$ = expected contribution over all possible sequences

• Then
$$f_i(N, v) = \sum_{S \subseteq N - \{i\}} f_{i,S} = \frac{1}{|N|!} \sum_{S \subseteq N - \{i\}} |S|! (|N| - |S| - 1)! (v(S \cup \{i\}) - v(S))$$

Example

- The voting game again
 - > Parties A, B, C, and D have 45, 25, 15, and 15 representatives
 - > A simple majority (51 votes) is required to pass the \$100M bill
- How much money is it fair for each party to demand?
 - Calculate the Shapley values of the game
- Every coalition with ≥ 51 members has value 1; other coalitions have value 0
- Recall what it means for two agents *i* and *j* to be interchangeable:
 - ➤ for every S that contains neither i nor j, $v(S \cup \{i\}) = v(S \cup \{j\})$
- B and C are interchangeable
 - \triangleright Each adds 0 to \emptyset , 1 to $\{A\}$, 0 to $\{D\}$, and 0 to $\{A,D\}$
- Similarly, B and D are interchangeable, and so are C and D
- So the fairness axiom says that B, C, and D should each get the same amount

Recall that

$$f_{i,S} = \frac{|S|!(|N|-|S|-1)!(v(S \cup \{i\}) - v(S))}{|N|!}$$

$$f_{i}(N,v) = \sum_{S \subseteq N - \{i\}} f_{i,S} = \frac{1}{|N|!} \sum_{S \subseteq N - \{i\}} |S|! (|N| - |S| - 1)! (v(S \cup \{i\}) - v(S))$$

- In the example, it will be useful to let $\varphi'_{i,S}$ be the term inside the summation
 - \rightarrow Hence $\varphi'_{i,S} = |N|! \varphi_{i,S}$
- Let's compute $\varphi_A(N, v)$
- $N = |\{A, B, C, D\}| = 4$, so $\int_{A, S} |S|! (3 |S|)! (v(S \succeq A) v(S))$
- S may be any of the following:
 - > Ø, {B}, {C}, {D}, {B,C}, {B,D}, {C,D}
- We need to sum over all of them:

$$j_{A}(N,v) = \frac{1}{4!}(j_{A,E}^{c} + j_{A,\{B\}}^{c} + j_{A,\{C\}}^{c} + j_{A,\{C\}}^{c} + j_{A,\{B\}}^{c} + j_{A,\{B,C\}}^{c} +$$

$$\int_{A,S} |S|! (3-|S|)! (v(S \succeq A) - v(S))$$

A has 45 membersB has 25 membersC has 15 membersD has 15 members

$$S = \emptyset \qquad \Rightarrow \ v(\{A\}) - v(\emptyset) = 0 - 0 = 0 \qquad \Rightarrow \ \phi'_{A,\emptyset} = 0! \ 3! \ 0 = 0$$

$$S = \{B\} \qquad \Rightarrow \ v(\{A,B\}) - v(\{B\}) = 1 - 0 = 1 \qquad \Rightarrow \ \phi'_{A,\{B\}} = 1! \ 2! \ 1 = 2$$

$$S = \{C\} \qquad \Rightarrow \text{ same}$$

$$S = \{D\} \qquad \Rightarrow \text{ same}$$

$$S = \{B,C\} \qquad \Rightarrow \ v(\{A,B,C\}) - v(\{B,C\}) = 1 - 0 = 1 \qquad \Rightarrow \ \phi'_{A,\{B,C\}} = 2! \ 1! \ 1 = 2$$

$$S = \{B,D\} \qquad \Rightarrow \text{ same}$$

$$S = \{C,D\} \qquad \Rightarrow \text{ same}$$

$$S = \{C,D\} \qquad \Rightarrow \text{ same}$$

$$S = \{B,C,D\} \Rightarrow v(\{A,B,C,D\}) - v(\{B,C,D\}) = 1 - 1 = 0 \Rightarrow \phi'_{A,\{B,C,D\}} = 3! \ 0! \ 0 = 0$$

$$\varphi_i(N,v) = \frac{1}{|N|!} \sum_{S \subseteq N - \{i\}} |S|! \ (|N| - |S| - 1)! \ (v(S \cup \{i\}) - v(S))$$

- Similarly, $\varphi_B = \varphi_C = \varphi_D = 1/6$
 - > The text calculates it using Shapley's formula
- Here's another way to get it:
 - \triangleright If A gets ½, then the other ½ will be divided among B, C, and D
 - They are interchangeable, so a fair division will give them equal amounts: 1/6 each
- So distribute the money as follows:
 - A gets (1/2) \$100M = \$50M
 - > B, C, D each get (1/6) \$100M = \$16\frac{2}{3}M

Stability of the Grand Coalition

- Agents have incentive to form the grand coalition iff there aren't any smaller coalitions in which they could get higher payoffs
- Sometimes a subset of the agents may prefer a smaller coalition
- Recall the Shapley values for our voting example:
 - A gets \$50M; B, C, D each get $$16\frac{2}{3}$ M
 - > A on its own can't do better
 - \triangleright But $\{A, B\}$ have incentive to defect and divide the \$100M
 - e.g., \$75M for *A* and \$25M for *B*
- What payment divisions would make the agents want to join the grand coalition?

The Core

- The **core** of a coalitional game includes every payoff vector **x** that gives every sub-coalition *S* at least as much in the grand coalition as *S* could get by itself
 - \triangleright All feasible payoff vectors $\mathbf{x} = (x_1, ..., x_n)$ such that for every $S \subseteq N$,

$$\underset{i \mid S}{\mathring{a}} x_i \stackrel{3}{\sim} v(S)$$

- For every payoff vector **x** in the core, no S has any incentive to **deviate** from the grand coalition
 - > i.e., form their own coalition, excluding the others
- It follows immediately that if x is in the core then x is efficient
 - > Why?

Analogy to Nash Equilibria

- The core is an analog of the set of all Nash equilibria in a noncooperative game
 - > There, no agent can do better by deviating from the equilibrium
- But the core is stricter
 - > No set of agents can do better by deviating from the grand coalition
- Analogous to the set of strong Nash equilibria
 - > Equilibria in which no coalition of agents can do better by deviating
- Unlike the set of Nash equilibria, the core may sometimes be empty
 - In some cases, no matter what the payoff vector is, some agent or group of agents has incentive to deviate

Example of an Empty Core

- Consider the voting example again:
 - > Shapley values are \$50M to A, and \$16.33M each to B, C, D
- The minimal coalitions that achieve 51 votes are
 - \rightarrow {A,B}, {A,C}, {A,D}, {B,C,D}
- If the sum of the payoffs to B, C, and D is < \$100M, this set of agents has incentive to deviate from the grand coalition
 - > Thus if x is in the core, x must allocate \$100M to {B, C, D}
 - ➤ But if B, C, and D get the entire \$100M, then A (getting \$0) has incentive to join with whichever of B, C, and D got the least
 - e.g., form a coalition {A,B} without the others
 - > So if x allocates the entire \$100M to {B,C,D} then x cannot be in the core
- So the core is empty

Simple Games

- There are several situations in which the core is either guaranteed to exist, or guaranteed not to exist
 - > The first one involves simple games
- Recall: G is simple for every coalition S, either v(S) = 1 or v(S) = 0
- Player *i* is a **veto player** if $v(N \{i\}) = 0$
- Theorem. In a simple game, the core is empty iff there is no veto player
- Example: previous slide

Simple Games

- **Theorem**. In a simple game in which there are veto players, the core is {all payoff vectors in which non-veto players get 0}
- Example: consider a modified version of the voting game
 - An 80% majority is required to pass the bill
- Recall that A, B, C, and D have 45, 25, 15, and 15 representatives
 - > The minimal winning coalitions are {A, B, C} and {A, B, D}
 - All winning coalitions must include both A and B
 - So A and B are veto players
 - The core includes all distributions of the \$100M among A and B
 - Neither A nor B can do better by deviating

Non-Additive Constant-Sum Games

- Recall:
 - > G is constant-sum if for all S, v(S) + v(N S) = v(N)
 - \triangleright G is additive if $v(S \cup T) = v(S) + v(T)$ whenever S and T are disjoint
- Theorem. Every non-additive constant-sum game has an empty core
- Example: consider a constant-sum game G with 3 players a, b, c
 - > Suppose v(a) = 1, v(b) = 1, v(c) = 1, $v({a,b,c})=4$
 - > Then $v(a) + v(\{b,c\}) = v(\{a,b\}) + v(c) = v(\{a,c\}) + v(b) = 4$
 - > Thus $v(\{b,c\}) = 4 1 = 3 \neq v(b) + v(c)$
 - > So G is not additive
- Consider $\mathbf{x} = (1.333, 1.333, 1.333)$
 - \triangleright v({a,b}) = 3, so if {a,b} deviate, they can allocate (1.5,1.5)
- To keep $\{a,b\}$ from deviating, suppose we use $\mathbf{x} = (1.5, 1.5, 1)$
 - \triangleright v({a,c}) = 3, so if {a,c} deviate, they can allocate (1.667, 1.333)

Convex Games

- Recall:
 - > G is convex if for all $S, T \subseteq N$, $v(S \cup T) \ge v(S) + v(T) v(S \cap T)$
- Theorem. Every convex game has a nonempty core
- Theorem. In every convex game, the Shapley value is in the core

Modified Parliament Example

- 100 representatives from four political parties:
 - \rightarrow A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.)
- Any coalition of parties can approve a spending bill worth \$1K times the number of representatives in the coalition:

$$v(S) = \mathop{a}_{i \mid S} \$1000 \text{ size}(i)$$

$$v(A) = \$45K$$
, $v(B) = \$25K$, $v(C) = \$15K$, $v(D) = \$15K$, $v(\{A,B\}) = \$70K$, $v(\{A,C\}) = \$60K$, $v(\{A,D\}) = \$60K$, $v(\{B,C\}) = \$40K$, $v(\{B,D\}) = \$40K$, $v(\{C,D\}) = \$30K$, $v(\{A,B,C\}) = \$100K$

Is the game convex?

Modified Parliament Example

- Let S be the grand coalition
 - > What is each party's Shapley value in S?
- Each party's Shapley value is the average value it adds to S, averaged over all 24 of the possible sequences in which S might be formed:

A, B, C, D; A, B, D, C; A, C, B, D; A, C, D, B; etc

- In every sequence, every party adds exactly \$1K times its size
- Thus every party's Shapley value is \$1K times its size:

$$\varphi_A = \$45 \text{K}, \qquad \varphi_B = \$25 \text{K}, \qquad \varphi_C = \$15 \text{K}, \qquad \varphi_D = \$15 \text{K}$$

$$\varphi_{R} = $25 \text{K},$$

$$\varphi_{C} = $15K,$$

$$\varphi_D = \$15K$$

Modified Parliament Example

- Suppose we distribute v(S) by giving each party its Shapley value
- Does any party or group of parties have an incentive to leave and form a smaller coalition *T*?
 - > v(T) = \$1 K times the number of representatives in T= the sum of the Shapley values of the parties in T
 - ➤ If each party in T gets its Shapley value, it does no better in T than in S
 - If some party in T gets more than its Shapley value, then another party in T will get less than its Shapley value
- No case in which every party in T does better in T than in S
- No case in which all of the parties in T will have an incentive to leave S and join T
- Thus the Shapley value is in the core