
CMSC 474, Introduction to Game Theory

28. Game-tree Search and Pruning Algorithms

Mohammad T. Hajiaghayi

University of Maryland

Finite perfect-information zero-sum games

 Finite:

 finitely many agents, actions, states, histories

 Perfect information:

 Every agent knows

• all of the players’ utility functions

• all of the players’ actions and what they do

• the history and current state

 No simultaneous actions – agents move one-at-a-time

 Constant sum (or zero-sum):

 Constant k such that regardless of how the game ends,

• Σi=1,…,n ui = k

 For every such game, there’s an equivalent game in which k = 0

Examples

 Deterministic:

 chess, checkers

 go, gomoku

 reversi (othello)

 tic-tac-toe, qubic, connect-four

 mancala (awari, kalah)

 9 men’s morris (merelles, morels, mill)

 Stochastic:

 backgammon, monopoly, yahtzee, parcheesi, roulette, craps

 For now, we’ll consider just the deterministic games

Outline

 A brief history of work on this topic

 Restatement of the Minimax Theorem

 Game trees

 The minimax algorithm

 α-β pruning

 Resource limits, approximate evaluation

 Most of this isn’t in the game-theory book

 For further information, look at the following

 Russell & Norvig’s Artificial Intelligence: A Modern Approach

• There are 3 editions of this book

• In the 2nd edition, it’s Chapter 6

Brief History
1846 (Babbage) designed machine to play tic-tac-toe

1928 (von Neumann) minimax theorem

1944 (von Neumann & Morgenstern) backward induction

1950 (Shannon) minimax algorithm (finite-horizon search)

1951 (Turing) program (on paper) for playing chess

1952–7 (Samuel) checkers program capable of beating its creator

1956 (McCarthy) pruning to allow deeper minimax search

1957 (Bernstein) first complete chess program, on IBM 704 vacuum-tube computer

could examine about 350 positions/minute

1967 (Greenblatt) first program to compete in human chess tournaments

3 wins, 3 draws, 12 losses

1992 (Schaeffer) Chinook won the 1992 US Open checkers tournament

1994 (Schaeffer) Chinook became world checkers champion;

Tinsley (human champion) withdrew for health reasons

1997 (Hsu et al) Deep Blue won 6-game match vs world chess champion Kasparov

2007 (Schaeffer et al) Checkers solved: with perfect play, it’s a draw

1014 calculations over 18 years

Restatement of the Minimax Theorem

 Suppose agents 1 and 2 use strategies s and t on a 2-person game G

 Let u(s,t) = u1(s,t) = –u2(s,t)

 Call the agents Max and Min (they want to maximize and minimize u)

Minimax Theorem: If G is a two-person finite zero-sum game, then there are

strategies s* and t*, and a number v called G’s minimax value, such that

 If Min uses t*, Max’s expected utility is ≤ v, i.e., maxs u(s,t*) = v

 If Max uses s*, Min’s expected utility is ≥ v, i.e., mint u(s*,t) = v

Corollary 1:

 u(s*,t*) = v

 (s*,t*) is a Nash equilibrium

 s* (or t*) is Max’s (or Min’s) minimax strategy and maximin strategy

Corollary 2: If G is a perfect-information game, then there are subgame-

perfect pure strategies s* and t* that satisfy the theorem.

s* (or t*) is also called “perfect

play” for Max (or Min)

Game Tree Terminology

 Root node: where the game starts

 Max (or Min) node: a node where it’s Max’s (or Min’s) move

 Usually draw Max nodes as squares, Min nodes as circles

 A node’s children: the possible “next nodes”

 Terminal node: a node where the game ends

Number of Nodes

 Let b = maximum branching factor

 Let h = height of tree (maximum depth of any terminal node)

 If h is even and the root is a Max node, then

 The number of Max nodes is 1 + b2 + b4 + … + bh–2 = O(bh)

 The number of Min nodes is b + b3 + b5 + … + bh–1 = O(bh)

 What if h is odd?

Number of Pure Strategies

 Pure strategy for Max: at every Max node, choose one branch

 O(bh) Max nodes, b choices at each of them => O(bbh) pure strategies

 In the following tree, how many pure strategies for Max?

 What about Min?

Finding the Minimax Strategy

 Brute-force way to find minimax strategy for Max

 Construct the sets S and T of all distinct strategies for Max and Min,

then choose

 Complexity analysis:

 Need to construct and store O(bbh) distinct strategies

 Each distinct strategy has size O(bh)

 Thus space complexity is O(b(bh+h))= bO(bh)

 Time complexity is slightly worse

 But there’s an easier way to find the minimax strategy

 Notation: v(x) = minimax value of the tree rooted at x

• If x is terminal then v(x) = uMax(x)

 tsus
TtSs

, maxminarg*




Backward Induction

MAX

3 12 8 642 14 5 2

MIN

3

a1 a3a2

a13a12a11

3 2 2

a23a22a21 a33a32a31

 Depth-first implementation of backward induction (Chapter 4)

 Returns v(x)

 Can easily modify it to return both v(x) and strategy a

function Backward-Induction(x)

if x is terminal then return v(x)

else if it is Max’s move at x then

return max{Backward-Induction( (x,a)) : a ∈ (x)}

else return min{Backward-Induction( (x,a)) : a ∈ (x)}

Complexity Analysis

 Space complexity

= O(maximum path length)•(space needed to store the path)

= O(bh)

 Time complexity = size of the game tree = O(bh)

 where b = branching factor, h = height of the game tree

 This is a lot better than bO(bh)

 But it still isn’t good enough for games like chess

 b ≈ 35, h ≈ 100 for “reasonable” chess games

 bh ≈ 35100 ≈ 10135 nodes

 Number of particles in the universe ≈ 1087

 10135 nodes is ≈ 1055 times the number of particles in the universe

⇒ no way to examine every node!

Minimax Algorithm (Shannon,1950)

function Minimax(x,d)

if x is terminal then return v(x)

else if d = 0 then return e(x)

else if it is Max’s move at x then

return max{Minimax( (x,a)), d – 1) : a ∈ (x)}

else return min{Minimax( (x,a)), d – 1) : a ∈ (x)}

 Backward induction with an upper bound d on the search depth

 Whenever we reach a nonterminal node of depth d, return e(x)

 e(x) is a static evaluation function: returns an estimate of v(x)

 If d = ∞, the algorithm is identical to Backward-Induction

 Space complexity = O(min(bh,bd))

 Time complexity = O(min(bh, bd))

Evaluation Functions

 e(x) is often a weighted sum of features

 e(x) = w1 f1(x) + w2 f2(x) + … + wn fn(x)

 E.g., in chess,

 1•(white pawns − black pawns) + 3•(white knights − black knights) + …

Exact Values for e(x) Don’t Matter

 Behavior is preserved under any monotonic transformation of e

 Only the order matters

Pruning (in 2-player games)

 Let’s go back to 2-player games …

 Backward-Induction and Minimax both examine nodes that don’t need

to be examined

Pruning

 b is better for Max than f is

 If Max is rational then Max will never choose f

 So don’t examine any more nodes below f

 They can’t affect v(a)

Pruning

 Don’t know whether h is better or worse than b

Pruning

 Still don’t know whether h is better or worse than b

Pruning

 h is worse than b

 Don’t need to examine any more nodes below h

 v(a) = 3

Alpha Cutoff

 Squares are Max nodes, circles are Min nodes

 Let  = max(a,b,c), and suppose d < 

 To reach s, the game must go through p, q, r

 By moving elsewhere at one of those nodes, Max

can get v ≥ 

 If the game ever reaches node s, then Min

can achieve v ≤ d < what Max can get elsewhere

 Max will never let that happen

 We don’t need to know anything more about s

 What if d =  ?

α = max(a,b,c) v=c

v ≥ c r

v ≥ ap

s

v=d

v=a

q

v=b

v ≥ b

v ≤ d

Beta Cutoff

 Squares are Max nodes, circles are Min nodes

 Let  = min(a,b,c), and suppose d > 

 To reach s, the game must go through p, q, r

 By moving elsewhere at one of those nodes, Min

can achieve v ≤ 

 If the game ever reaches node s, then Max

can achieve v ≥ d > what Min can get elsewhere

 Min will never let that happen

 We don’t need to know anything more about s

 What if d =  ?

β = min(a,b,c) v=c

 v ≤ c r

v ≤ ap

s

v=d

v=a

q

v=b

 v ≤ b

v ≥ d

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning
if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

Alpha-Beta Pruning

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

Alpha-Beta Pruning

function Alpha-Beta(x, d, α, β)

if x is terminal then return uMax(x)

else if d = 0 then return e(x)

else do everything in the 2nd column

return v

if it is Max’s move at x then

v ← –

for every child y of x do

v ← max(v, Alpha-Beta (y, d − 1, α, β)

if v ≥ β then return v

else α ← max(α, v)

else

v ← 

for every child y of x do

v ← min(v, Alpha-Beta (y, d − 1, α, β)

if v ≤ α then return v

else β ← min(β,v)

Properties of Alpha-Beta

 Alpha-beta pruning reasons about which computations are relevant

 A form of metareasoning

Theorem:

 If the value returned by Minimax(x, d) is in [α,β]

• then Alpha-Beta(x, d, α, β) returns the same value

 If the value returned by Minimax(x, d) is ≤ α

• then Alpha-Beta(x, d, α, β) returns a value ≤ α

 If the value returned by Minimax(x, d) is ≥ β

• then Alpha-Beta(x, d, α, β) returns a value ≥ β

Corollary:

• Alpha-Beta(x, d, −∞, ∞) returns the same value as Minimax(x, d)

• Alpha-Beta(x, ∞, −∞, ∞) returns v(x)

Node Ordering

 Deeper lookahead (larger d) usually gives better decisions

 There are “pathological” games where

it doesn’t, but those are rare

 Compared to Minimax,

how much farther ahead

can Alpha-Beta look?

 Best case:

 children of Max nodes are searched in greatest-value-first order,

children of Min nodes are searched in least-value-first order

 Alpha-Beta’s time complexity is O(bd/2) ⇒ doubles the solvable depth

 Worst case:

 children of Max nodes are searched in least-value first order,

children of Min nodes are searched in greatest-value first order

 Like Minimax, Alpha-Beta visits all nodes of depth ≤ d: time

complexity O(bd)

Node Ordering

 How to get closer to the best case:

 Every time you expand a state s, apply e to its children

 When it’s Max’s move, sort the children in order of largest e first

 When it’s Min’s move, sort the children in order of smallest e first

 Suppose we have 100 seconds, explore 104 nodes/second

 106 nodes per move

 Put this into the form bd/2 ≈ 358/2

 Best case Alpha-Beta reaches depth 8 ⇒ pretty good chess program

Other Modifications

 Several other modifications that can improve the accuracy or computation

time (but not covered in this class):

 quiescence search and biasing

 transposition tables

 thinking on the opponent’s time

 table lookup of “book moves”

 iterative deepening

Game-Tree Search in Practice

 Checkers: In 1994, Chinook ended 40-year-reign of human world

champion Marion Tinsley

 Tinsley withdrew for health reasons, died a few months later

 In 2007, Checkers was solved: with perfect play, it’s a draw

This took 1014 calculations over 18 years. Search space size 5 × 1020

 Chess: In 1997, Deep Blue defeated Gary Kasparov in a six-game match

 Deep Blue searches 200 million positions per second

 Uses very sophisticated evaluation, and undisclosed methods for

extending some lines of search up to 40 ply

 Othello: human champions don’t compete against computers

 The computers are too good

 Go: in 2006, good amateurs could beat the best go programs

• Even with a 9-stone handicap

 Go programs have improved a lot during the past 5 years

Summary

 Two-player zero-sum perfect-information games

 the maximin and minimax strategies are the same

 only need to look at pure strategies

 can do a game-tree search

• minimax values, alpha-beta pruning

 In sufficiently complicated games, perfection is unattainable

 limited search depth, static evaluation function

 Monte Carlo roll-outs

 Game-tree search can be modified for games in which there are stochastic

outcomes

