CMSC 474, Introduction to Game Theory

Normal-Form Games

Mohammad T. Hajiaghayi University of Maryland

Example: Let's Play a Game

- I need two volunteers to play a short game
 - Preferably two people who don't know each other
 - > You'll have a chance to get some chocolate

Example: Let's Play a Game

- I need two volunteers to play a short game
 - Preferably two people who don't know each other
 - > You'll have a chance to get some chocolate
- Come to the front of the room
 - > Face opposite directions, don't talk to each other
- You may choose one of two actions
 - Don't let the other player know which one, until I say so

Example: Let's Play a Game

- I need two volunteers to play a short game
 - Preferably two people who don't know each other
 - > You'll have a chance to get some chocolate
- Come to the front of the room
 - > Face opposite directions, don't talk to each other
- You may choose one of two actions
 - Don't let the other player know which one, until I say so
- The Chocolate Dilemma^{*}
 - **Take 1** piece of chocolate, and you may keep it
 - **Take 3** pieces of chocolate, and they'll go to the other player

^{*} http://theoryclass.wordpress.com/2010/03/05/the-chocolate-dilemma/

- Please go to <u>http://www.surveymonkey.com/s/RYLDSRX</u> and tell which Chocolate Dilemma action you would choose in each of these situations:
 - > The other player is a stranger whom you'll never meet again.
 - > The other player is an enemy.
 - > The other player is a friend.
 - > The other player is a computer program instead of a human.
 - > You haven't eaten in two days.
 - "Take1" means you take two chocolates instead of just one.
 - > You and the other player can discuss what choices to make.
 - > You will be playing the game repeatedly with the same person.
 - Thousands of people are playing the game. None of you knows which of the others is the one you're playing with.
 - Thousands of people are playing the game. "Take3" means the three chocolates go to a collection that will be divided equally among everyone.
 - The bag is filled with money. "Take1" means you take \$2500 and you can keep it. "Take3" means you take \$3000 but it will go to the other player.

Some game-theoretic answers

- Suppose that—
 - Each player just wants to maximize how many chocolates he/she gets
 - Neither player cares about *anything* other than that
 - Both players understand all of the possible outcomes
 - All this is common knowledge to both players
- Then each player will take 1 piece of chocolate
 - If they can talk to each other beforehand, it won't change the outcome
 - Repeat any fixed number of times => same outcome
 - Repeat an unbounded number of times => they might take 3 instead
- Is this realistic? We discuss it further later

Games in Normal Form

• A (finite, *n*-person) **normal-form game** includes the following:

- 1. An ordered set N = (1, 2, 3, ..., n) of **agents** or **players**:
- 2. Each agent *i* has a finite set A_i of possible actions
 - An action profile is an *n*-tuple $\mathbf{a} = (a_1, a_2, ..., a_n)$, where $a_1 \in A_1$, $a_2 \in A_2$, ..., $a_n \in A_n$
 - The set of all possible action profiles is $\mathbf{A} = A_1 \times \cdots \times A_n$
- 3. Each agent *i* has a real-valued **utility** (or **payoff**) function

 $u_i(a_1,\ldots,a_n) = i$'s payoff if the action profile is (a_1,\ldots,a_n)

- Most other game representations can be reduced to normal form
- Usually represented by an *n*-dimensional payoff (or utility) matrix
 - for each action profile, shows the utilities of all the agents

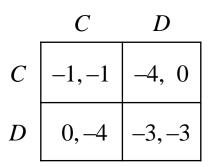
 take 3
 take 1

 take 3
 3, 3
 0, 4

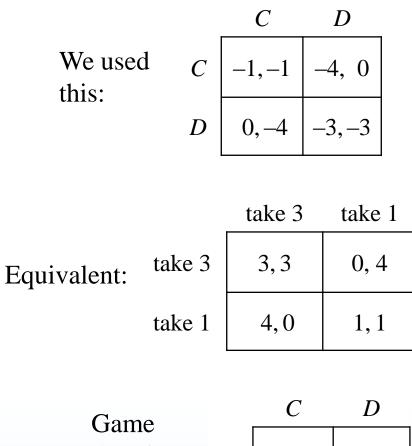
 take 1
 4, 0
 1, 1

The Prisoner's Dilemma

- Scenario: The police are holding two prisoners as suspects for committing a crime
 - > For each prisoner, the police have enough evidence for a 1 year prison sentence
 - > They want to get enough evidence for a 4 year prison sentence
 - > They tell each prisoner,
 - "If you testify against the other prisoner, we'll reduce your prison sentence by 1 year"
 - C = Cooperate (with the other prisoner):
 refuse to testify against him/her
 - > D = Defect: testify against the other prisoner
 - Both prisoners cooperate => both go to prison for 1 year
 - > Both prisoners defect => both go to prison for 4 1 = 3 years
 - One defects, other cooperates => cooperator goes to prison for 4 years; defector goes free

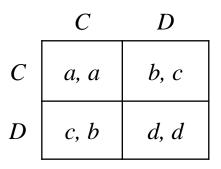


Prisoner's Dilemma



Game theorists usually use this:

	С	D		
С	3, 3	0, 5		
D	5, 0	1, 1		



• General form: c > a > d > b $2a \ge b + c$

Utility Functions

- Idea: the preferences of a rational agent must obey some constraints
- Constraints:

Orderability (sometimes called **Completeness**):

 $(A > B) \lor (B > A) \lor (A \sim B)$

Transitivity:

 $(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)$

- Agent's choices are based on rational preferences
 ⇒ agent's behavior is describable as maximization of expected utility
- **Theorem** (Ramsey, 1931; von Neumann and Morgenstern, 1944).
- Given preferences satisfying the constraints above, there exists a real-valued function *u* such that

 $u(A) \ge u(B) \iff A \ge B \tag{(*)}$

u is called a **utility function**

Utility Scales

- Rational preferences are invariant with respect to **positive affine** (or **positive linear**) transformations
- Let

 $u'(x) = c \ u(x) + d$

where *c* and *d* are constants, and c > 0

> Then *u*' models the same set of preferences that *u* does

• Normalized utilities:

> define *u* such that $u_{\text{max}} = 1$ and $u_{\text{min}} = 0$

Utility Scales for Games

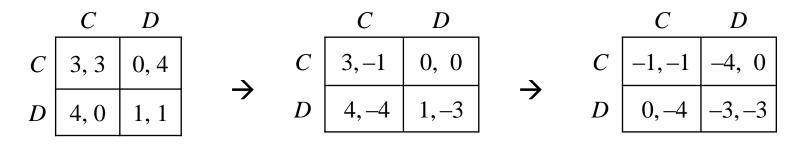
- Suppose that all the agents have rational preferences, and that this is common knowledge* to all of them
- Then games are insensitive to positive affine transformations of one or more agents' payoffs
 - > Let *c* and *d* be constants, c > 0
 - > For one or more agents *i*, replace every payoff x_{ij} with $cx_{ij} + d$
 - The game still models the same sets of rational preferences

	<i>a</i> ₂₁	<i>a</i> ₂₂		a_{21}	<i>a</i> ₂₂		<i>a</i> ₂₁	a_{22}
<i>a</i> ₁₁	x_{11}, x_{21}	<i>x</i> ₁₂ , <i>x</i> ₂₂	<i>a</i> ₁₁	$cx_{11}+d, x_{21}$	$cx_{12}+d, x_{22}$	<i>a</i> ₁₁	$cx_{11}+d, ex_{21}+f$	<i>cx</i> ₁₂ + <i>d</i> , <i>ex</i> ₂₂ + <i>f</i>
<i>a</i> ₁₂	x_{13}, x_{23}	x_{14}, x_{24}	<i>a</i> ₁₂	$cx_{13}+d, x_{23}$	$cx_{14}+d, x_{24}$	<i>a</i> ₁₂	$cx_{13}+d, ex_{23}+f$	<i>cx</i> ₁₄ + <i>d</i> , <i>ex</i> ₂₄ + <i>f</i>

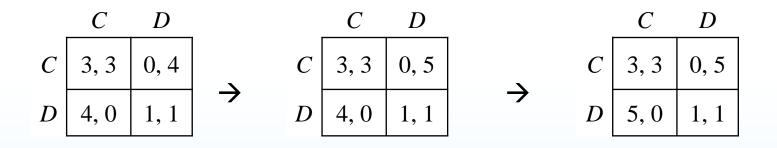
^{*}Common knowledge is a complicated topic; I'll discuss it later

Examples

• Are these transformations positive affine?



• How about these?



Decision Making Under Risk

- Which of the following lotteries would you choose?
 - > A: 100% chance of receiving \$3000
 - ▶ B: 80% chance of receiving \$4000; 20% chance of receiving nothing

Decision Making Under Risk

- Which of the following lotteries would you choose?
 - C: 100% chance of losing \$3000
 - > D: 80% chance of losing \$4000; 20% chance of losing nothing

Decision Making Under Risk

- Which of the following lotteries would you choose?
 - A: 100% chance of receiving \$3000
 - ▶ B: 80% chance of receiving \$4000; 20% chance of receiving nothing
- Which of the following lotteries would you choose?
 - ➤ C: 100% chance of losing \$3000
 - > D: 80% chance of losing \$4000; 20% chance of losing nothing
- Kahneman & Tversky, 1979:
 - \blacktriangleright EV(A) = \$3000 < EV(B) = \$3200, but most people would choose A
 - For prospects involving gains, we're *risk-averse*
 - \blacktriangleright EV(C) = -\$3000 > EV(D) = -\$3200, but most people would choose D
 - For prospects involving losses, we're *risk-prone*
 - http://www.econport.org/econport/request?page=man_ru_advanced_prospect