CMSC 474, Introduction to Game Theory

Important Normal-Form Games

Mohammad T. Hajiaghayi
University of Maryland
Common-payoff Games

- **Common-payoff game:**
 - For every action profile, all agents have the same payoff
 - Also called a **pure coordination** game or a **team game**
 - Need to coordinate on an action that is maximally beneficial to all

- **Which side of the road?**
 - 2 people driving toward each other in a country with no traffic rules
 - Each driver independently decides whether to stay on the left or the right
 - Need to coordinate your action with the action of the other driver

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>1, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>Right</td>
<td>0, 0</td>
<td>1, 1</td>
</tr>
</tbody>
</table>
A Brief Digression

- **Mechanism design**: set up the rules of the game, to give each agent an incentive to choose a desired outcome
- E.g., the law says what side of the road to drive on
 - Sweden on September 3, 1967:
Zero-sum Games

- These games are purely competitive

- **Constant-sum** game:
 - For every action profile, the sum of the payoffs is the same, i.e.,
 - there is a constant c such for every action profile $a = (a_1, \ldots, a_n)$,
 - $u_1(a) + \ldots + u_n(a) = c$

- Any constant-sum game can be transformed into an equivalent game in which the sum of the payoffs is always 0
 - Positive affine transformation: subtract c/n from every payoff

- Thus constant-sum games are usually called **zero-sum** games
Examples

Matching Pennies
- Two agents, each has a penny
- Each independently chooses to display Heads or Tails
 - If same, agent 1 gets both pennies
 - Otherwise agent 2 gets both pennies

<table>
<thead>
<tr>
<th></th>
<th>Heads</th>
<th>Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td>1, –1</td>
<td>–1, 1</td>
</tr>
<tr>
<td>Tails</td>
<td>–1, 1</td>
<td>1, –1</td>
</tr>
</tbody>
</table>

Penalty kicks in soccer
- A kicker and a goalie
- Kicker can kick left or right
- Goalie can jump to left or right
- Kicker scores if he/she kicks to one side and goalie jumps to the other
Another Example: Rock-Paper-Scissors

- **Two players.** Each simultaneously picks an action: *Rock, Paper, or Scissors.*

- **The rewards:**

 - Rock beats Scissors
 - Scissors beats Paper
 - Paper beats Rock

- **The matrices:**

 $$R_1 = \begin{pmatrix}
 R & P & S \\
 R & 0 & -1 & 1 \\
 P & 1 & 0 & -1 \\
 S & -1 & 1 & 0 \\
 \end{pmatrix} \quad \quad R_2 = \begin{pmatrix}
 R & P & S \\
 R & 0 & 1 & -1 \\
 P & -1 & 0 & 1 \\
 S & 1 & -1 & 0 \\
 \end{pmatrix}$$
A game is **nonconstant-sum** (usually called **nonzero-sum**) if there are action profiles \(a \) and \(b \) such that

\[
 u_1(a) + \ldots + u_n(a) \neq u_1(b) + \ldots + u_n(b)
\]

- e.g., the Prisoner’s Dilemma

Battle of the Sexes

- Two agents need to coordinate their actions, but they have different preferences
- Original scenario:
 - husband prefers football, wife prefers opera
- Another scenario:
 - Two nations must act together to deal with an international crisis, and they prefer different solutions
In a symmetric game, every agent has the same actions and payoffs.

If we change which agent is which, the payoff matrix will stay the same.

For a 2x2 symmetric game, it doesn’t matter whether agent 1 is the row player or the column player.

The payoff matrix looks like this:

In the payoff matrix of a symmetric game, we only need to display u_1.

If you want to know another agent’s payoff, just interchange the agent with agent 1.
Strategies in Normal-Form Games

- **Pure strategy**: select a single action and play it
 - Each row or column of a payoff matrix represents both an action and a pure strategy
- **Mixed strategy**: randomize over the set of available actions according to some probability distribution
 - \(s_i(a_j) \) = probability that action \(a_j \) will be played in mixed strategy \(s_i \)
- The **support** of \(s_i = \{ \text{actions that have probability} > 0 \text{ in} \ s_i \} \)
- A pure strategy is a special case of a mixed strategy
 - support consists of a single action
- A strategy \(s_i \) is **fully mixed** if its support is \(A_i \)
 - i.e., nonzero probability for every action available to agent \(i \)
- **Strategy profile**: an \(n \)-tuple \(s = (s_1, \ldots, s_n) \) of strategies, one for each agent
Expected Utility

- A payoff matrix only gives payoffs for pure-strategy profiles
- Generalization to mixed strategies uses expected utility
 - First calculate probability of each outcome, given the strategy profile (involves all agents)
 - Then calculate average payoff for agent i, weighted by the probabilities
 - Given strategy profile $s = (s_1, \ldots, s_n)$
 - expected utility is the sum, over all action profiles, of the profile’s utility times its probability:

$$u_i(s) = \sum_{a \in A} u_i(a) \Pr[a | s]$$

i.e.,

$$u_i(s_1, \ldots, s_n) = \left(\sum_{(a_1, \ldots, a_n) \in A} u_i(a_1, \ldots, a_n) s_j(a_j) \right)_{j=1}^n$$
Let’s Play another Game

• Choose a number in the range from 0 to 100
 ➢ Write it on a piece of paper
 ➢ Also write your name (this is optional)
 ➢ Fold your paper in half, so nobody else can see your number
 ➢ Pass your paper to the front of the room

• The winner(s) will be whoever chose a number that’s closest to the average of all the numbers
 ➢ I’ll tell you the results later
 ➢ The winner(s) will get some prize
Summary of Past Three Sessions

- Basic concepts:
 - normal form, utilities/payoffs, pure strategies, mixed strategies
- How utilities relate to rational preferences (not in the book)
- Some classifications of games based on their payoffs
 - Zero-sum
 - Rock-paper-scissors, Matching Pennies
 - Non-zero-sum
 - Chocolate Dilemma, Prisoner’s Dilemma, Which Side of the Road?, Battle of the Sexes
 - Common-payoff
 - Which Side of the Road?
 - Symmetric
 - All of the above except Battle of the Sexes