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Dominant Strategies

e Lets;and s be two strategies for agent i

> Intuitively, s; dominates s;’ if agent i does better with s; than with s;/
for every strategy profile s_; of the remaining agents

e Mathematically, there are three gradations of dominance:
> s; strictly dominates s;’ if for every s_;,
U; (Si, S=) > U; (57, 59)
> s; weakly dominates s;' if for every s ;,
U; (S, S—) = U; (S, S)
and for at least one s_;,
Ui (Siy S—i) > U; (Si', )
> s; very weakly dominates s;’ if for every s_;,
U; (Si, S=i ) = U; (87, S_)



Dominant Strategy Equilibria

e A strategy is strictly (resp., weakly, very weakly) dominant for an agent

If it strictly (weakly, very weakly) dominates any other strategy for that
agent

e A strategy profile (s, . . ., s,) in which every s; is dominant for agent i
(strictly, weakly, or very weakly) is a Nash equilibrium
« Why?

> Such a strategy profile forms an equilibrium in strictly (weakly, very
weakly) dominant strategies



Examples

Example: the Prisoner’s Dilemma
> http://www.youtube.com/watch?v=ED9gaAb2BEw

For agent 1, D is strictly dominant ol @
> If agent 2 uses C, then ﬂ

« Agent 1’s payoff is higher with D than with C D H 0

> If agent 2 uses D, then
« Agent 1’s payoff is higher with D than with C

Similarly, D is strictly dominant for agent 2 C

So (D,D) is a Nash equilibrium in strictly dominant strategies
D

C D
3,3 0,5

How do strictly dominant strategies relate to strict Nash equilibria?



http://www.youtube.com/watch?v=ED9gaAb2BEw

Example: Matching Pennies

e Matching Pennies
> If agent 2 uses Heads, then
« For agent 1, Heads is better than Tails
> If agent 2 uses Talils, then
« For agent 1, Tails is better than Heads

> Agent 1 doesn’t have a dominant strategy

=>no Nash equilibrium in dominant strategies

e Which Side of the Road
> Same kind of argument as above
> No Nash equilibrium in dominant strategies
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Elimination of Strictly Dominated Strategies

® A strategy s; is strictly (weakly, very weakly) dominated for an agent i

If some other strategy s;’ strictly (weakly, very weakly) dominates s;

L R
® A strictly dominated strategy can’t be a best N
response to any move, so we can eliminate it el R
(remove it from the payoff matrix) ol 51|10
> This gives a reduced game
> Other strategies may now be strictly dominated, ] R
even if they weren’t dominated before \
D| 51 1,10
e |ESDS (lterated Elimination of Strictly Dominated Strategies):
> Do elimination repeatedly until no more eliminations are possible |
> When no more eliminations are possible, we have Dl 51
the maximal reduction of the original game ’




IESDS

If you eliminate a strictly dominated strategy, the reduced
game has the same Nash equilibria as the original one

Thus
{Nash equilibria of the original game}
= {Nash equilibria of the maximally reduced game}

Use this technique to simplify finding Nash equilibria
> Look for Nash equilibria on the maximally reduced game

In the example, we ended up with a single cell

> The single cell must be a unique Nash equilibrium
in all three of the games

L R
Y3365
D| 51 |10
L R
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IESDS

® Even if s; isn’t strictly dominated by a pure
strategy, it may be strictly dominated by a
mixed strategy

e Example: the three games shown at right

> 15t game:
* R is strictly dominated by L (and by C)
- Eliminate it, get 2" game

> 2" game:
 Neither U nor D dominates M
« But {(*2, U), (*2, D)} strictly dominates M

» This wasn’t true before we removed R

« Eliminate it, get 3" game

> 3" game is maximally reduced
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The Price of Anarchy (PoA)

@ In the Chocolate Game, recall that

> (T3,T3) is the action profile that
provides the best outcome for everyone

> If we assume each payer acts to maximize
his/her utility without regard to the other,
we get (T1,T1)

> By choosing (T3,T3), each player could
have gotten 3 times as much

® Let’s generalize “best outcome for everyone”
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The Price of Anarchy

Social welfare function: a function w(s) that measures the players’ welfare,
given a strategy profile s, e.qg.,

> Utilitarian function: w(s) = average expected utility
> Egalitarian function: w(s) = minimum expected utility

Social optimum: benevolent dictator chooses s* that optimizes w
> S* = arg max, w(s)

Anarchy: no dictator; every player selfishly tries to optimize his/her own
expected utility, disregarding the welfare of the other players

> Get a strategy profile s (e.g., a Nash equilibrium)
> In general, w(s) < w(s*)

Price of AnarChy (POA) = MaXs js Nash equilibrium W(S*) /W(S)
PoA is the most popular measure of inefficiency of equilibria.

We are generally interested in PoA which is closer to 1, 1.e., all equilibria are
good approximations of an optimal solution.



The Price of Anarchy

e Example: the Chocolate Game

> Utilitarian welfare function: T3 Tl
w(s) = average expected utility 3 0.4

e Social optimum: s* =(T3,T3) T1| 4,0 | 1,1
> w(s*)=3
T3 T1
o AnarChy: S = (Tl,Tl) T3| 3.3 0 4
> wW(s)=1
T1| 4,0

e Price of anarchy
= w(s*)/w(s) =3/1=3

e \What would the answer be if we used the egalitarian welfare function?



The Price of Anarchy

e® Sometimes instead of maximizing a welfare function w,

we want to minimize a cost function c (e.g. in Prisoner’s Dilemma)

> Utilitarian function: c¢(s) = avg. expected cost C D
> Egalitarian function: c(s) = max. expected cost cl 33| os
e Need to adjust the definitions D| 50

> Social optimum:  s* = arg min,c(s)

> Anarchy: every player selfishly tries to minimize his/her own

cost, disregarding the costs of the other players
 Get a strategy profile s (e.g., a Nash equilibrium)
* In general, c(s) > c(s*)
> Price of Anarchy (POA) = maX; is nash equitibrium €(S) / €(5¥)
* 1.e., the reciprocal of what we had before

* E.g. in Prisoner’s dilemma POA= 3




Braess’s Paradox in Road Networks

e Suppose 1,000 drivers wish to travel from S (start) to D (destination)
> Two possible paths:
« S5>A—-D and S»>B—D
> The road from S to A is long: t = 50 minutes

* Butit’s also very wide:
t = 50 no matter how many cars >

> Same for road from B to D cars/25
> Road from A to D is shorter but is narrow
« Time = (number of cars)/25
e Nash equilibrium:
> 500 cars go through A, 500 cars through B
» Everyone’s time 1s 50 + 500/25 = 70 minutes

> If asingle driver changes to the other route then there are 501 cars on
that route, so his/her time goes up

t = cars/25




Braess’s Paradox (cont’d)

Add a very short and wide road from B to A:

> 0 minutes to traverse, no matter how many cars
Nash equilibrium:
> All 1000 cars go S->B—>A—-D
> Time for S—B is 1000/25 = 40 minutes
> Total time is 80 minutes
To see that this is an equilibrium: :
> If driver goes S—>A—D, his/her cost is 50 + 40 = 90 minutes
> If driver goes S—B—D, his/her cost is 40 + 50 = 90 minutes
> Both are dominated by S->B—A—D
To see that it’s the only Nash equilibrium:

> For every traffic pattern, S—B—A—D dominates S—A—D and
S—>B—-D

> Choose any traffic pattern, and compute the times a driver would get on
all three routes




The Price of Anarchy

Example: Braess’s Paradox

> Utilitarian cost function: ¢(s) = average expected cost

Social optimum:
> s*=[500 go S=>A->D; 500 go S>B->D]
> ¢c(s*) =70

Anarchy: s =[1000 drivers go S>B>A->D]
> c(s) =80

Price of anarchy = c(s) /c(s*) = 8/7

e
t = cars/25

What would the answer be if we used the egalitarian cost function?

Note that when we talk about Price of Anarchy for Nash equilibria in
general, we consider the worst case Nash equilibrium



Discussion

In the example, adding the extra road increased
the travel time from 70 minutes to 80 minutes

> This suggests that carelessly adding
road capacity can actually be hurtful

But are the assumptions realistic?
For A—B, t = 0 regardless of how many cars

> Road length = 0? Then S—A and S—B must go to the same location, so
how can their travel times be so different?

For S—A, t =50 regardless of how many cars

> Isita 1000-lane road?
For 1000 cars, does “t = cars/25” really mean 40 minutes per car?

> The cars can’t all start at the same time

> If they go one at a time, could have 40 minutes total but 1/25 minute/car
So can this really happen in practice?



Braess’s Paradox in Practice

1969, Stuttgart, Germany — when a new road to city the center was opened,
traffic got worse; and it didn’t improve until the road was closed

1990, Earth day, New York — closing 42nd street improved traffic flow
1999, Seoul, South Korea — closing a tunnel improved traffic flow

2003, Seoul, South Korea — traffic flow was improved by closing a 6-lane
motorway and replacing it with a 5-mile-long park

2010, New York — closing parts of Broadway has improved traffic flow

Braess’s paradox can also occur in other kinds of networks such as queuing
networks or communication networks;

> In principle, it can occur in Internet traffic though I don’t have enough
evidence to know how much of a problem it is

Sources

> http://www.umassmag.com/transportationandenergy.htm

http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-|.pdf

http://www.quardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact

http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
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http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html
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