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Dominant Strategies

 Let si and si be two strategies for agent i

 Intuitively, si dominates si if agent i does better with si than with si

for every strategy profile s−i of the remaining agents

Mathematically, there are three gradations of dominance:

 si strictly dominates si if for every s−i ,

ui (si, s−i) > ui (si, s−i)

 si weakly dominates si if for every s−i ,

ui (si, s−i) ≥ ui (si, s−i)

and for at least one s−i ,

ui (si, s−i ) > ui (si, s−i ) 

 si very weakly dominates si if for every s−i ,

ui (si, s−i ) ≥ ui (si, s−i)



Dominant Strategy Equilibria

 A strategy is strictly (resp., weakly, very weakly) dominant for an agent 

if it strictly (weakly, very weakly) dominates any other strategy for that 

agent

 A strategy profile (s1, . . . , sn) in which every si is dominant for agent i

(strictly, weakly, or very weakly) is a Nash equilibrium

• Why?

 Such a strategy profile forms an equilibrium in strictly (weakly, very 

weakly) dominant strategies



Examples

 Example: the Prisoner’s Dilemma

 http://www.youtube.com/watch?v=ED9gaAb2BEw

 For agent 1, D is strictly dominant

 If agent 2 uses C, then

• Agent 1’s payoff is higher with D than with C

 If agent 2 uses D, then

• Agent 1’s payoff is higher with D than with C

 Similarly, D is strictly dominant for agent 2

 So (D,D) is a Nash equilibrium in strictly dominant strategies

 How do strictly dominant strategies relate to strict Nash equilibria?

C D

C 3, 3 0, 5

D 5, 0 1, 1

C D

C 3, 3 0, 5

D 5, 0 1, 1

http://www.youtube.com/watch?v=ED9gaAb2BEw


Example: Matching Pennies

 Matching Pennies

 If agent 2 uses Heads, then

• For agent 1, Heads is better than Tails

 If agent 2 uses Tails, then

• For agent 1, Tails is better than Heads

 Agent 1 doesn’t have a dominant strategy

=> no Nash equilibrium in dominant strategies

 Which Side of the Road

 Same kind of argument as above

 No Nash equilibrium in dominant strategies

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



L

D 5, 1

Elimination of Strictly Dominated Strategies

 A strategy si is strictly (weakly, very weakly) dominated for an agent i

if some other strategy si strictly (weakly, very weakly) dominates si

 A strictly dominated strategy can’t be a best

response to any move, so we can eliminate it

(remove it from the payoff matrix)

 This gives a reduced game 

 Other strategies may now be strictly dominated,

even if they weren’t dominated before

 IESDS (Iterated Elimination of Strictly Dominated Strategies):

 Do elimination repeatedly until no more eliminations are possible

 When no more eliminations are possible, we have

the maximal reduction of the original game

L R

U 3, 3 0, 5

D 5, 1 1, 0

L R

D 5, 1 1, 0



 If you eliminate a strictly dominated strategy, the reduced 

game has the same Nash equilibria as the original one

 Thus

{Nash equilibria of the original game}

= {Nash equilibria of the maximally reduced game} 

 Use this technique to simplify finding Nash equilibria

 Look for Nash equilibria on the maximally reduced game

 In the example, we ended up with a single cell

 The single cell must be a unique Nash equilibrium

in all three of the games

IESDS

L R

U 3, 3 0, 5

D 5, 1 1, 0

L R

D 5, 1 1, 0

L

D 5, 1



IESDS

 Even if si isn’t strictly dominated by a pure

strategy, it may be strictly dominated by a

mixed strategy

 Example: the three games shown at right

 1st game:

• R is strictly dominated by L (and by C)

• Eliminate it, get 2nd game

 2nd game:

• Neither U nor D dominates M

• But {(½, U), (½, D)} strictly dominates M

› This wasn’t true before we removed R

• Eliminate it, get 3rd game

 3rd game is maximally reduced 

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

L C

U 3, 1 0, 1

D 0, 1 4, 1



The Price of Anarchy (PoA)

 In the Chocolate Game, recall that

 (T3,T3) is the action profile that

provides the best outcome for everyone

 If we assume each payer acts to maximize

his/her utility without regard to the other, 

we get (T1,T1)

 By choosing (T3,T3), each player could 

have gotten 3 times as much

 Let’s generalize “best outcome for everyone”

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1



The Price of Anarchy
 Social welfare function: a function w(s) that measures the players’ welfare, 

given a strategy profile s, e.g.,

 Utilitarian function: w(s) = average expected utility

 Egalitarian function: w(s) = minimum expected utility

 Social optimum: benevolent dictator chooses s* that optimizes w

 s* = arg maxs w(s)

 Anarchy: no dictator; every player selfishly tries to optimize his/her own 

expected utility, disregarding the welfare of the other players

 Get a strategy profile s (e.g., a Nash equilibrium)

 In general, w(s) ≤ w(s*)

Price of Anarchy (PoA) = maxs is Nash equilibrium w(s*) / w(s)

 PoA is the most popular measure of inefficiency of equilibria.

 We are generally interested in PoA which is closer to 1, i.e., all equilibria are 

good approximations of an optimal solution.



The Price of Anarchy

 Example: the Chocolate Game

 Utilitarian welfare function:

w(s) = average expected utility

 Social optimum:  s* = (T3,T3)

 w (s*) = 3

 Anarchy:  s = (T1,T1)

 w(s) = 1

 Price of anarchy

= w(s*) / w(s) = 3/1 = 3

 What would the answer be if we used the egalitarian welfare function?

T 3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1



The Price of Anarchy

 Sometimes instead of maximizing a welfare function w,

we want to minimize a cost function c (e.g. in Prisoner’s Dilemma)

 Utilitarian function: c(s) = avg. expected cost

 Egalitarian function: c(s) = max. expected cost

 Need to adjust the definitions

 Social optimum:    s* = arg mins c(s)

 Anarchy: every player selfishly tries to minimize his/her own 

cost, disregarding the costs of the other players

• Get a strategy profile s (e.g., a Nash equilibrium)

• In general, c(s) ≥ c(s*)

 Price of Anarchy (PoA) = maxs is Nash equilibrium c(s) / c(s*)

• i.e., the reciprocal of what we had before

• E.g. in Prisoner’s dilemma  PoA= 3

C D

C 3, 3 0, 5

D 5, 0 1, 1



Braess’s Paradox in Road Networks 

 Suppose 1,000 drivers wish to travel from S (start) to D (destination)

 Two possible paths:

• SAD and  SBD

 The road from S to A is long: t = 50 minutes

• But it’s also very wide:
t = 50 no matter how many cars

 Same for road from B to D

 Road from A to D is shorter but is narrow

• Time = (number of cars)/25

 Nash equilibrium:

 500 cars go through A, 500 cars through B

 Everyone’s time is 50 + 500/25 = 70 minutes

 If a single driver changes to the other route then there are 501 cars on 
that route, so his/her time goes up

S

D

t = 

cars/25

t = cars/25

t = 

50

t = 50

B

A



Braess’s Paradox (cont’d)

 Add a very short and wide road from B to A:

 0 minutes to traverse, no matter how many cars

 Nash equilibrium:

 All 1000 cars go SBAD 

 Time for SB is 1000/25 = 40 minutes

 Total time is 80 minutes

 To see that this is an equilibrium:

 If driver goes SAD, his/her cost is 50 + 40 = 90 minutes

 If driver goes SBD, his/her cost is 40 + 50 = 90 minutes

 Both are dominated by SBAD

 To see that it’s the only Nash equilibrium:

 For every traffic pattern, SBAD dominates SAD and 
SBD

 Choose any traffic pattern, and compute the times a driver would get on 
all three routes

S

D

t = 

cars/25

t = cars/25

t = 

50

t = 50

B

A
t = 0



The Price of Anarchy

 Example: Braess’s Paradox

 Utilitarian cost function: c(s) = average expected cost

 Social optimum:

 s* = [500 go SAD; 500 go SBD]

 c(s*) = 70

 Anarchy:  s = [1000 drivers go SBAD]

 c (s) = 80

 Price of anarchy = c(s) / c(s*) = 8/7

 What would the answer be if we used the egalitarian cost function?

 Note that when we talk about Price of Anarchy for Nash equilibria in 

general, we consider the worst case Nash equilibrium

S

D

t = cars/25

t = cars/25

t = 50

t = 50

B

A

t = 0



Discussion

 In the example, adding the extra road increased

the travel time from 70 minutes to 80 minutes

 This suggests that carelessly adding

road capacity can actually be hurtful

 But are the assumptions realistic?

 For AB, t = 0 regardless of how many cars

 Road length = 0? Then SA and SB must go to the same location, so 

how can their travel times be so different?

 For SA, t = 50 regardless of how many cars

 is it a 1000-lane road?

 For 1000 cars, does “t = cars/25” really mean 40 minutes per car?

 The cars can’t all start at the same time

 If they go one at a time, could have 40 minutes total but 1/25 minute/car

 So can this really happen in practice? 

S

D

t = 

cars/25

t = cars/25

t = 

50

t = 50

B

A
t = 0



Braess’s Paradox in Practice
 1969, Stuttgart, Germany – when a new road to city the center was opened, 

traffic got worse; and it didn’t improve until the road was closed

 1990, Earth day, New York – closing 42nd street improved traffic flow

 1999, Seoul, South Korea – closing a tunnel improved traffic flow

 2003, Seoul, South Korea – traffic flow was improved by closing a 6-lane 

motorway and replacing it with a 5-mile-long park

 2010, New York – closing parts of Broadway has improved traffic flow

 Braess’s paradox can also occur in other kinds of networks such as queuing 

networks or communication networks; 

 In principle, it can occur in Internet traffic though I don’t have enough 

evidence to know how much of a problem it is

 Sources

 http://www.umassmag.com/transportationandenergy.htm

 http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf

 http://www.guardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact

 http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights

 http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html

http://www.umassmag.com/transportationandenergy.htm
http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf
http://www.guardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact
http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html

