CMSC 474, Introduction to Game Theory
Maxmin and Minmax Strategies

Mohammad T. Hajiaghayi
University of Maryland
Worst-Case Expected Utility

- For agent i, the **worst-case** expected utility of a strategy s_i is the minimum over all possible combinations of strategies for the other agents:
 \[
 \min_{s_i} u_i(s_i, s_{-i})
 \]

- **Example: Battle of the Sexes**
 - Wife’s strategy $s_w = \{(p, \text{Opera}), (1-p, \text{Football})\}$
 - Husband’s strategy $s_h = \{(q, \text{Opera}), (1-q, \text{Football})\}$
 - $u_w(p,q) = 2pq + (1-p)(1-q) = 3pq - p - q + 1$
 - For any fixed p, $u_w(p,q)$ is linear in q
 - e.g., if $p = \frac{1}{2}$, then $u_w(\frac{1}{2},q) = \frac{1}{2} q + \frac{1}{2}$
 - $0 \leq q \leq 1$, so the min must be at $q = 0$ or $q = 1$
 - e.g., $\min_q (\frac{1}{2} q + \frac{1}{2})$ is at $q = 0$
 - $\min_q u_w(p,q) = \min (u_w(p,0), u_w(p,1)) = \min (1 - p, 2p)$

<table>
<thead>
<tr>
<th></th>
<th>Husband</th>
<th>Wife</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opera</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>Football</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

We can write $u_w(p,q)$ instead of $u_w(s_w, s_h)$
Maxmin Strategies

- **A maxmin strategy** for agent i
 - A strategy s_i that makes i’s worst-case expected utility as high as possible:
 \[
 \arg\max_{s_i} \min_{s_i} u_i(s_i, s_i)
 \]
 - This isn’t necessarily unique
 - Often it is mixed

- Agent i’s **maxmin value**, or **security level**, is the maxmin strategy’s worst-case expected utility:
 \[
 \max_{s_i} \min_{s_i} u_i(s_i, s_i)
 \]

- For 2 players it simplifies to
 \[
 \max_{s_1} \min_{s_2} u_1(s_1, s_2)
 \]

Also called **maximin**
Example

- Wife’s and husband’s strategies
 - $s_w = \{(p, \text{Opera}), (1-p, \text{Football})\}$
 - $s_h = \{(q, \text{Opera}), (1-q, \text{Football})\}$

- Recall that wife’s worst-case expected utility is
 \[\min_q u_w(p,q) = \min (1-p, 2p)\]
 - Find p that maximizes it

- Max is at $1-p = 2p$, i.e., $p = 1/3$
 - Wife’s maxmin value is $1-p = 2/3$
 - Wife’s maxmin strategy is
 \[\{(1/3, \text{Opera}), (2/3, \text{Football})\}\]

- Similarly,
 - Husband’s maxmin value is $2/3$
 - Husband’s maxmin strategy is
 \[\{(2/3, \text{Opera}), (1/3, \text{Football})\}\]
Question

- Why might an agent i want to use a maxmin strategy?
Why might an agent i want to use a maxmin strategy?

- Useful if i is cautious (wants to maximize his/her worst-case utility) and doesn’t have any information about the other agents
 - whether they are rational
 - what their payoffs are
 - whether they draw their action choices from known distributions
- Useful if i has reason to believe that the other agents’ objective is to minimize i’s expected utility
 - e.g., 2-player zero-sum games (we discuss this later in his session)

Solution concept: **maxmin strategy profile**
- all players use their maxmin strategies
Minmax Strategies (in 2-Player Games)

- **Minmax strategy** and **minmax value**
 - Duals of their maxmin counterparts
- Suppose agent 1 wants to punish agent 2, regardless of how it affects agent 1’s own payoff
- Agent 1’s **minmax strategy** against agent 2
 - A strategy s_1 that minimizes the expected utility of 2’s best response to s_1
 \[
 \arg\min_{s_1} \max_{s_2} u_2(s_1, s_2)
 \]
- Agent 2’s **minmax value** is 2’s maximum expected utility if agent 1 plays his/her minmax strategy:
 \[
 \min_{s_1} \max_{s_2} u_2(s_1, s_2)
 \]
- **Minmax strategy profile**: both players use their minmax strategies

Also called **minimax**
Example

- Wife’s and husband’s strategies
 - \(s_w = \{(p, \text{Opera}), (1-p, \text{Football})\} \)
 - \(s_h = \{(q, \text{Opera}), (1-q, \text{Football})\} \)

- \(u_h(p,q) = pq + 2(1-p)(1-q) = 3pq - 2p - 2q + 2 \)

- Given wife’s strategy \(p \), husband’s expected utility is linear in \(q \)
 - e.g., if \(p = \frac{1}{2} \), then \(u_h(\frac{1}{2},q) = -\frac{1}{2} q + 1 \)

- Max is at \(q = 0 \) or \(q = 1 \)
 - \(\max_q u_h(p,q) = (2-2p, p) \)

- Find \(p \) that minimizes this

- Min is at \(-2p + 2 = p \) \(\Rightarrow p = \frac{2}{3} \)

- Husband/s minmax value is \(\frac{2}{3} \)

- Wife’s minmax strategy is \(\{(\frac{2}{3}, \text{Opera}), (\frac{1}{3}, \text{Football})\}\)
Minmax Strategies in n-Agent Games

- In n-agent games ($n > 2$), agent i usually can’t minimize agent j’s payoff by acting unilaterally.

- But suppose all the agents “gang up” on agent j.
 - Let s^*_{-j} be a mixed-strategy profile that minimizes j’s maximum payoff, i.e.,
 \[
 s^*_{-j} = \arg \min_{s_{-j}} \left(\max_{s_j} u_j(s_j, s_{-j}) \right)
 \]
 - For every agent $i \neq j$, a **minmax strategy for** i is i’s component of s^*_{-j}.

- **Agent j’s minmax value** is j’s maximum payoff against s^*_{-j}.
 - \[
 \max_{s_j} u_j(s_j, s^*_{-j}) = \min_{s_j} \max_{s_j} u_j(s_j, s_{-j})
 \]

- We have equality since we just replaced s^*_{-j} by its value above.
Minimax Theorem (von Neumann, 1928)

- **Theorem.** Let G be any finite two-player zero-sum game. For each player i,
 - i’s expected utility in any Nash equilibrium
 - $= i$’s maxmin value
 - $= i$’s minmax value
 - In other words, for every Nash equilibrium (s_1^*, s_2^*),
 \[
 u_1(s_1^*, s_2^*) = \min_{s_1} \max_{s_2} u_1(s_1, s_2) = \max_{s_2} \min_{s_1} u_1(s_1, s_2) = -u_2(s_1^*, s_2^*)
 \]

- **Corollary.** For two-player zero-sum games: \{Nash equilibria\} = \{maxmin strategy profiles\} = \{minmax strategy profiles\}

- Note that this is **not necessary true** for non-zero-sum games as we saw for Battle of Sexes in previous slides

- Terminology: the value (or minmax value) of G is agent 1’s minmax value.
Maximin and Minimax via LP

- Let \(u_2 = u_1 = u \) and let mixed strategies \(s_1 = x = (x_1, \ldots, x_k) \) and \(s_2 = y = (y_1, \ldots, y_r) \), in which player 1 has \(k \) strategies and player 2 has \(r \) strategies.

- Then \(u(x, y) = \sum_i \sum_j x_i y_j u_{i,j} = \sum_j y_j \sum_i x_i u_{i,j} \)

- We want to find \(x^* \) which optimizes \(v^1 = \max_x \min_y u(x,y) \)

- Since player 2 is doing his best response (in \(\min_y u(x,y) \)) he sets \(y_j > 0 \) only if \(\sum_i x_i u_{i,j} \) is minimized.

Thus \(v^1 = \sum_j \sum_i x_i y_j u_{i,j} = (\sum_j y_j) \min_j \sum_i x_i u_{i,j} = \min_j \sum_i x_i u_{i,j} \leq \sum_i x_i u_{i,j} \) for any \(j \)

We have the following LP to find \(v^1 \) and the first player strategy \(x^* \)

\[
\begin{align*}
\max & \quad v^1 \\
\text{such that} & \quad v^1 \leq \sum_i x_i u_{i,j} \text{ for all } j \\
\sum_i x_i & = 1 \\
x_i & \geq 0
\end{align*}
\]
Maximin and Minimax via LP

- Similarly by writing an LP for minimax value $v^2 = \min_y \max_x u(x, y)$, we can obtain the second player strategy
 $$\min v^2$$
 such that $v^2 \geq \sum_j y_j u_{i,j}$ for all i
 $$\sum_j y_j = 1$$
 $$y_j \geq 0$$

- Note that due to Minimax Theorem $v^1 = v^2$
 ($v^1 \leq v^2$ is trivial just by definitions). Also $(s_1, s_2) = (x, y)$ is a Nash equilibrium.
Example: Matching Pennies

- Agent 1’s strategy: display heads with probability p
- Agent 2’s strategy: display heads with probability q

\[u_1(p, q) = pq + (1 - p)(1 - q) - p(1 - q) - q(1 - p) = 1 - 2p - 2q + 4pq \]

\[u_2(p, q) = -u_1(p, q) \]

Want to show that

- \{Nash equilibria\} = \{maxmin strategy profiles\} = \{minmax strategy profiles\} = \{(p = \frac{1}{2}, q = \frac{1}{2})\}
Example: Matching Pennies

- **Find Nash equilibria**

 \[
 u_1(p, q) = 1 - 2p - 2q + 4pq \\
 u_2(p, q) = -u_1(p, q)
 \]

- If \(p = q = \frac{1}{2} \), then \(u_1 = u_2 = 0 \)

- If agent 1 changes to \(p \neq \frac{1}{2} \) and agent 2 keeps \(q = \frac{1}{2} \), then
 - \(u_1(p, \frac{1}{2}) = 1 - 2p - 1 + 2p = 0 \)

- If agent 2 changes to \(q \neq \frac{1}{2} \) and agent 1 keeps \(p = \frac{1}{2} \), then
 - \(u_2(\frac{1}{2}, q) = -(1 - 2q - 1 + 2q) = 0 \)

- Thus \(p = q = \frac{1}{2} \) is a Nash equilibrium

- Are there any others?
Example: Matching Pennies

- Show there are no other Nash equilibria

 \[u_1(p, q) = 1 - 2p - 2q + 4pq \]

 \[u_2(p, q) = -u_1(p, q) \]

- Consider any strategy profile \((p, q)\)
 where \(p \neq \frac{1}{2}\) or \(q \neq \frac{1}{2}\) or both

 - Several different cases, depending on the exact values of \(p\) and \(q\)
 - In every one of them, either agent 1 can increase \(u_1\) by changing \(p\), or agent 2 can increase \(u_2\) by changing \(q\), or both

- So there are no other Nash equilibria
Example: Matching Pennies

- Find all maxmin strategy profiles
 \[u_1(p, q) = 1 - 2p - 2q + 4pq \]
 \[u_2(p, q) = -u_1(p, q) \]

- If agent 1’s strategy is \(p = \frac{1}{2} \)
 then regardless of 2’s value of \(q \),
 \[u_1(\frac{1}{2}, q) = 1 - 2q - 1 + 2q = 0 \]

- If agent 1’s strategy is \(p > \frac{1}{2} \)
 then 2’s best response is \(q = 0 \)
 (see the diagram)
 \[u_1(p, 0) = 1 - 2p < 0 \]

- If agent 1’s strategy is \(p < \frac{1}{2} \)
 then 2’s best response is \(q = 1 \)
 \[u_1(p, 1) = -1 + 2p < 0 \]

- Thus 1 has one maxmin strategy: \(p = \frac{1}{2} \)

- Similarly, 2 has one maxmin strategy: \(q = \frac{1}{2} \)
Example: Matching Pennies

- **Find all minmax strategy profiles**

 \[u_1(p, q) = 1 - 2p - 2q + 4pq \]

 \[u_2(p, q) = - u_1(p, q) \]

- If agent 1’s strategy is \(p = \frac{1}{2} \)
 then regardless of 2’s value of \(q \),
 \[u_2\left(\frac{1}{2}, q\right) = -(1 - 2q - 1 + 2q) = 0 \]

- If agent 1’s strategy is \(p > \frac{1}{2} \)
 then 2’s best response is \(q = 0 \)
 (see the diagram)
 \[u_2(p, 0) = -(1 - 2p) > 0 \]

- If agent 1’s strategy is \(p < \frac{1}{2} \)
 then 2’s best response is \(q = 1 \)
 \[u_2(p, 1) = -(1 - 2p) > 0 \]

- Thus 1 has one minmax strategy: \(p = \frac{1}{2} \)

- Similarly, 2 has one minmax strategy: \(q = \frac{1}{2} \)