CMSC 474, Introduction to Game Theory

Rationalizability and Correlated Equilibrium

Mohammad T. Hajiaghayi University of Maryland

Rationalizability

- A strategy is **rationalizable** if a *perfectly rational agent* could justifiably play it against *perfectly rational opponents*
 - > The formal definition complicated
- Informally:
 - A strategy for agent *i* is rationalizable if it's a best response to strategies that *i* could *reasonably* believe the other agents have
 - > To be reasonable, i's beliefs must take into account
 - the other agents' knowledge of *i*'s rationality,
 - their knowledge of *i*'s knowledge of *their* rationality,
 - and so on so forth recursively
- A **rationalizable strategy profile** is a strategy profile that consists only of rationalizable strategies

Rationalizability

- Every Nash equilibrium is composed of rationalizable strategies
- Thus the set of rationalizable strategies (and strategy profiles) is always nonempty

Example: Which Side of the Road

- For Agent 1, the pure strategy $s_1 = Left$ is rationalizable because
 - > $s_1 = Left$ is 1's best response if 2 uses $s_2 = Left$,
 - > and 1 can reasonably believe 2 would rationally use $s_2 = Left$, because
 - $s_2 = Left$ is 2's best response if 1 uses $s_1 = Left$,
 - and 2 can reasonably believe 1 would rationally use $s_1 = Left$, because
 - > $s_1 = Left$ is 1's best response if 2 uses $s_2 = Left$,
 - > and 1 can reasonably believe 2 would rationally use $s_2 = Left$, because
 - ... and so on so forth...

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

Rationalizability

• Some rationalizable strategies are not part of any Nash equilibrium

Example: Matching Pennies

- For Agent 1, the pure strategy $s_1 = Heads$ is rationalizable because
 - > $s_1 = Heads$ is 1's best response if 2 uses $s_2 = Heads$,
 - > and 1 can reasonably believe 2 would rationally use $s_2 = Heads$, because
 - $s_2 = Heads$ is 2's best response if 1 uses $s_1 = Tails$,
 - and 2 can reasonably believe 1 would rationally use $s_1 = Tails$, because
 - > $s_1 = Tails$ is 1's best response if 2 uses $s_2 = Tails$,
 - > and 1 can reasonably believe 2 would rationally use $s_2 = Tails$, because
 - ... and so on so forth...

Common Knowledge

- The definition of common knowledge is recursive analogous to the definition of rationalizability
- A property *p* is *common knowledge* if
 - Everyone knows p
 - Everyone knows that everyone knows p
 - Everyone knows that everyone knows that everyone knows p

≻ ...

We Aren't Rational

• More evidence that we aren't game-theoretically rational agents

- Why choose an "irrational" strategy?
 - Several possible reasons …

Reasons for Choosing "Irrational" Strategies

- (1) Limitations in reasoning ability
 - Didn't calculate the Nash equilibrium correctly
 - Don't know how to calculate it
 - Don't even know the concept
- (2) Wrong payoff matrix doesn't encode agent's actual preferences
 - It's a common error to take an external measure (money, points, etc.) and assume it's all that an agent cares about
 - > Other things may be more important than winning
 - Being helpful
 - Curiosity
 - Creating mischief
 - Venting frustration
- (3) Beliefs about the other agents' likely actions (next slide)

Beliefs about Other Agents' Actions

- A Nash equilibrium strategy is best for you if the other agents also use their Nash equilibrium strategies
- In many cases, the other agents won't use Nash equilibrium strategies
 - If you can guess what actions they'll choose, then
 - You can compute your best response to those actions
 - > maximize your expected payoff, given their actions
 - Good guess => you may do much better than the Nash equilibrium
 - Bad guess => you may do much worse

Correlated Equilibrium: Pithy Quote

If there is intelligent life on other planets, in a majority of them, they would have discovered correlated equilibrium before Nash equilibrium.

----Roger Myerson

Correlated Equilibrium: Intuition

- Not every correlated equilibrium is a Nash equilibrium but every Nash equilibrium is a correlated equilibrium
- We have a **traffic light**: a fair randomizing device that tells one of the agents to go and the other to wait.
- Benefits:
 - easier to compute than Nash, e.g., it is polynomial-time computable
 - fairness is achieved
 - the sum of social welfare exceeds that of any Nash equilibrium

Correlated Equilibrium

• Recall the mixed-strategy equilibrium for the Battle of the Sexes

>
$$s_w = \{(2/3, \text{Opera}), (1/3, \text{Football})\}$$

> $s_h = \{(1/3, \text{Opera}), (2/3, \text{Football})\}$

Husband Wife	Oper a	Football
Opera	2, 1	0, 0
Football	0, 0	1, 2

- This is "fair": each agent is equally likely to get his/her preferred activity
- But 5/9 of the time, they'll choose different activities => utility 0 for both
 - > Thus each agent's expected utility is only 2/3
 - > We've required them to make their choices independently
- Coordinate their choices (e.g., flip a coin) => eliminate cases where they choose different activities
 - > Each agent's payoff will always be 1 or 2; expected utility 1.5
- Solution concept: **correlated** equilibrium
 - Generalization of a Nash equilibrium

Correlated Equilibrium Definition

- Let *G* be an 2-agent game (for now).
- Recall that in a (mixed) Nash Equilibrium at the end we compute a probability matrix (also known as joint probability distribution) P = [p_{i,j}] where Σ_{i,j}p_{i,j} = 1 and in addition p_{i,j} = q_i. q'_j where Σ_iq_i = 1 and Σ_jq'_j = 1 (here q and q' are the mixed strategies of the first agent and the second agent).
- Now if we remove the constraint $p_{i,j} = q_i \cdot q'_j$ (and thus $\Sigma_i q_i = 1$ and $\Sigma_j q'_j = 1$) but still keep all other properties of Nash Equilibrium then we have a *Correlated Equilibrium*.
- Surely it is clear that by this definition of Correlated Equilibrium, every Nash Equilibrium is a Correlated Equilibrium as well but note vice versa.
- Even for a more general *n*-player game, we can compute a Correlated Equilibrium in polynomial time by a linear program (as we see in the next slide).
- Indeed the constraint $p_{i,j} = q_i \cdot q'_j$ is the one that makes computing Nash Equilibrium harder.

- ▶ variables: p(a); constants: $u_i(a)$
- we could find the social-welfare maximizing CE by adding an objective function

maximize:
$$\sum_{a \in A} p(a) \sum_{i \in N} u_i(a).$$

Motivation of Correlated Equilibrium

- Let *G* be an *n*-agent game
- Let "Nature"(e.g., a *traffic light*) choose action profile $\mathbf{a} = (a_1, ..., a_n)$ randomly according to our computed joint probability distribution (Correlated Equilibirum) p.
- Then "Nature" tells each agent *i* the value of a_i (privately)
 - > An agent can condition his/her action based on (private) value a_i
- However by the definition of best response in Nash Equilibrium (which also exists in Correlated Equilibrium), agent *i* will not deviate from suggested action *a_i*
 - Note that here we implicitly assume because other agents are rational as well, they choose the suggested actions by the "Nature" which are given to them privately.
- Since there is no randomization in the actions, the correlated equilibrium might seem more natural.