CMSC 474, Introduction to Game Theory 11. Evolutionary Stability

Mohammad T. Hajiaghayi University of Maryland

Outline

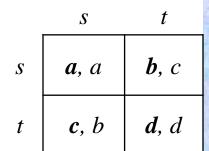
- Chapter 2 discussed two solution concepts:
 - Pareto optimality and Nash equilibrium
- Chapter 3 discusses several more:
 - Maxmin and Minmax
 - Dominant strategies
 - Correlated equilibrium
 - Trembling-hand perfect equilibrium (complicated defintion)
 - > ε-Nash equilibrium
 - > Evolutionarily stable strategies

Evolutionary Stability

- This concept comes from evolutionary biology
- Start with a population of some species
 - > For us species are those agents playing a particular strategy s
- Add a small population of "invaders" species
 - For us invaders are those agents playing a different strategy t
 - \triangleright Assume t invades s at level p, i.e., p is the fraction that uses t
 - (1-p) = the fraction that uses s
- If s's fitness against the mixture of both species is higher than t's, then t's proportion will shrink and s's will grow (thus s is ``stable'')
 - > Fitness for species is the ability to both survive and reproduce
 - For us, fitness of a species its expected payoff from interacting with a random member of the population, namely with species *t* with probability *p* and with species *s* with probability 1-*p*

Evolutionary Stability

- Write a payoff matrix for the two species against each other
 - > Symmetric 2-player game, so we only need to look at agent 1's payoffs
- A strategy's **fitness** is its expected payoff against a randomly chosen agent
 - \rightarrow fitness(s) = (1-p)a + pb
 - \rightarrow fitness(t) = (1-p)c + pd
- s is evolutionarily stable against t if there is an $\varepsilon > 0$ such that for every $p < \varepsilon$, fitness(s) > fitness(t)
 - \triangleright i.e., (1-p)a + pb > (1-p)c + pd
- As $p \to 0$, $(1-p)a + pb \to a$ and $(1-p)c + pd \to c$
 - For sufficiently small p, the inequality holds if a > c, or if a = c and b > d
- Thus s is evolutionarily stable against t iff either of the following holds:
 - a > c
 - a = c and b > d



Example: the Body-Size Game

- Consider two different sizes of beetles competing for food
 - > When beetles of the same size compete, they get equal shares
 - > When large competes with small, large gets most of the food
 - Large beetles get less fitness benefit from any given amount of food
 - Some of it is diverted into maintaining

their expensive metabolism	small	5, 5	1, 8
Is a population of small beetles	large	8, 1	3, 3
evolutionarily stable against large beetles?	Field Harva		The state of the

Is a population of large beetles evolutionarily stable against small ones?

	large	small
large	3, 3	8, 1
small	1, 8	5, 5

small

large

- Source:
 - http://www.cs.cornell.edu/home/kleinber/networks-book

Evolutionary Stability

- More generally, suppose s is a mixed strategy
- Represents a population composed of several species
- We'll talk about s's evolutionary stability against all other mixed strategies
- s is an evolutionarily stable strategy (ESS) iff for every mixed strategy $t \neq s$, either of the following holds:
 - u(s,s) > u(t,s)
 - u(s,s) = u(t,s) and u(s,t) > u(t,t)

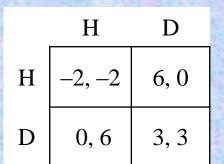
(note that $u_1 = u_2$ since the game is symmetric)

- s is weakly evolutionarily stable iff for every mixed strategy $t \neq s$, either of the following stability conditions holds:
 - 1. u(s,s) > u(t,s)
 - 2. u(s,s) = u(t,s) and $u(s,t) \ge u(t,t)$
 - > Includes cases where s and t have the same fitness
 - So the population that uses t neither grows nor shrinks

Example

The Hawk-Dove game

- 2 animals contend for a piece of food
- Each animal may be either a hawk (H) or a dove (D)
 - The prize is worth 6 to each
 - Fighting costs each 5
- When a hawk meets a dove, the hawk gets the prize without a fight: payoffs 6, 0
- When 2 doves meet, they split the prize without a fight: payoffs 3, 3
- When 2 hawks meet,
 - > They fight, and each has a 50% chance of getting the prize
 - > For each, the payoff is $-5 + 0.5 \cdot 6 = -2$
- Unique Nash equilibrium (s, s), where $s = \{(3/5, H), (2/5, D)\}$
 - > i.e., 60% hawks, 40% doves

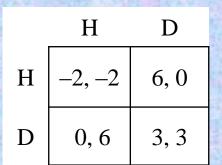


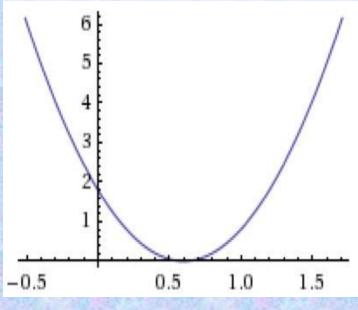
Example

- To confirm that s is also an ESS, show that for all $t \neq s$,
 - $u_1(s,s) > u_1(t,s)$ OR
 - $u_1(s, s) = u_1(t, s)$ and $u_1(s, t) > u_1(t, t)$
 - where $s = \{(3/5, H), (2/5, D)\}$ and $t = \{(p, H), (1-p, D)\}$
- For *every* fully-mixed strategy s, if (s,s) is a Nash equilibrium then $u_1(s,s) = u_1(t,s)$
- Next, show $u_1(s,t) > u_1(t,t)$:

$$u_1(s,t) = (3/5)(-2p + 6(1-p)) + (2/5)(0p + 3(1-p))$$

- $u_1(t,t) = p(-2p + 6(1-p)) + (1-p)(0p + 3(1-p))$
- Let $v = u_1(s,t) u_1(t,t)$
- Easy to solve using http://wolframalpha.com
 - \triangleright Simplifies to $v = 5p^2 6p + 9/5$
 - > Unique minimum v = 0 when p = 3/5, i.e., t = s
 - ► If $p \neq 3/5$ then v > 0, i.e., $u_1(s,t) > u_1(t,t)$





Evolutionary Stability and Nash Equilibria

- Recall that s is **evolutionarily stable** iff for every mixed strategy $t \neq s$, either of the following holds:
 - u(s,s) > u(t,s) (1)
 - u(s,s) = u(t,s) and u(s,t) > u(t,t) (2)

Theorem. Let G be a symmetric 2-player game, and s be a mixed strategy. If s is an evolutionarily stable strategy, then (s, s) is a Nash equilibrium of G.

Proof. By definition, an ESS s must satisfy $u(s,s) \ge u(t,s)$, i.e., s is a best response to itself, so it must be a Nash equilibrium.

Theorem. Let G be a symmetric 2-player game, and s be a mixed strategy. If (s,s) is a strict Nash equilibrium of G, then s is evolutionarily stable.

Proof. If (s,s) is a strict Nash equilibrium, then u(s,s) > u(t,s).

> This satisfies (1) above

Summary

- > Maxmin and minmax strategies, and the Minimax Theorem
 - Matching Pennies, Two-Finger Morra
- dominant strategies
 - Prisoner's Dilemma, Which Side of the Road, Matching Pennies
 - Iterated elimination of dominated strategies (IESDS)
- rationalizability
 - the *p*-Beauty Contest
- correlated equilibrium
 - Battle of the Sexes
- epsilon-Nash equilibria
- > evolutionarily stable strategies
 - Body-Size game, Hawk-Dove game