CMSC 474, Introduction to Game Theory Perfect-Information Extensive Form Games

Mohammad T. Hajiaghayi University of Maryland

The Sharing Game

- Suppose agents 1 and 2 are two children
- Someone offers them two cookies, but only if they can agree how to share them
- Agent 1 chooses one of the following options:
 - > Agent 1 gets 2 cookies, agent 2 gets 0 cookies
 - They each get 1 cookie
 - > Agent 1 gets 0 cookies, agent 2 gets 2 cookies
- Agent 2 chooses to accept or reject the split:
 - Accept => they each get their cookies(s)
 - Otherwise, neither gets any

Extensive Form

- The sharing game is a game in **extensive form**
 - > A game representation that makes the temporal structure explicit
 - Doesn't assume agents act simultaneously
- Extensive form can be converted to normal form
 - So previous results carry over
 - > But there are additional results that depend on the temporal structure
- In a perfect-information game, the extensive form is a **game tree**:
 - > Choice (or nonterminal) node: place where an agent chooses an action
 - Edge: an available action or move
 - > **Terminal node**: a final outcome
 - At each terminal node h, each agent i has a utility u_i(h)

Notation from the Book (Section 4.1)

- $H = \{\text{nonterminal nodes}\}$
- $Z = \{\text{terminal nodes}\}$
- If *h* is a nonterminal node, then
 - $\triangleright \rho(h)$ = the player to move at h
 - > $\chi(h) = \{ all available actions at h \}$
 - > $\sigma(h,a)$ = node produced by action *a* at node *h*
 - h's children or successors = { σ(h,a) : a ∈ χ(h) }
- If *h* is a node (either terminal or nonterminal), then
 - > *h*'s **history** = the sequence of actions leading from the root to h
 - h's descendants
 - = all nodes in the subtree rooted at h
- The book doesn't give the nodes names
 - The labels tell which agent makes the next move

Pure Strategies

- Pure strategy for agent *i* in a perfect-information game:
 - > Function telling what action to take at every node where it's *i*'s choice
 - i.e., every node *h* at which $\rho(h) = i$
- The book specifies pure strategies as lists of actions
 - > Which action at which node?
 - Either assume a canonical ordering on the nodes, or use different action names at different nodes

Sharing game:

- Agent 1 has 3 pure strategies: $S_1 = \{2-0, 1-1, 0-2\}$
- Agent 2 has 8 pure strategies:

Extensive form vs. normal form

- Every game tree corresponds to an equivalent normal-form game
- The first step is to get all of the agents' pure strategies
- Each pure strategy for *i* must specify an action at every node where it's *i*'s move
- Example: the game tree shown here
 - > Agent 1 has four pure strategies:
 - $s_1 = \{(A, G), (A, H), (B, G), (B, H)\}$
 - > Mathematically, (A, G) and (A, H) are different strategies, even though action A makes the G-versus-H choice irrelevant
 - > Agent 2 also has four pure strategies:
 - $s_2 = \{(C, E), (C, F), (D, E), (D, F)\}$

Extensive form vs. normal form

- Once we have all of the pure strategies, we can rewrite the game in normal form
- Note that payoffs come from that of the unique leaf which will be accessible from the root
- Converting to normal form introduces redundancy
 - 16 outcomes in the payoff matrix, versus 5 outcomes in the game tree
 - Payoff (3,8) occurs
 - once in the game tree
 - four times in the payoff matrix
- This can cause an exponential blowup

Nash Equilibrium

- **Theorem.** Every perfect-information game in extensive form has a pure-strategy Nash equilibrium
 - This theorem has been attributed to Zermelo (1913), but there's some controversy about that
- Intuition:
 - Agents take turns, and everyone sees what's happened so far before making a move
 - So never need to introduce randomness (A,H) into action selection to find an equilibrium (B,G)
- In our example, there are three purestrategy Nash equilibria

Nash Equilibrium

- The concept of a Nash equilibrium can be too weak for use in extensive-form games
- Recall that our example has three pure-strategy Nash equilibria:
 - ▶ $\{(A,G), (C,F)\}$
 - ▷ {(A,H), (C,F)}
 - > $\{(B,H), (C,E)\}$
- Here is {(B,H), (C,E)} with the game in extensive form

AB				
C (3,8)	2 D (8,3)	E) (5,5		F \ 1
	(0,0)	, (0,0	G (2,10)	H (1,0)
	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

Subgame-Perfect Equilibrium

- Given a perfect-information extensive-form game G, the **subgame** of G rooted at node h is the restriction of G to the descendants of h
- Now we can define a refinement of a Nash equilibrium
- A **subgame-perfect equilibrium** (SPE) is a strategy profile **s** such that for every subgame *G*' of *G*, the restriction of **s** to *G*' is a Nash equilibrium of *G*'
 - Since G itself is is a subgame of G, every SPE is also a Nash equilibrium
- Every perfect-information extensive-form game has at least 1 SPE
 - > Can prove this by induction on the height of the game tree

Example

▶ $\{(A, G), (C, F)\}$

Backward Induction

- To find subgame-perfect equilibria, we can use **backward induction**
- Identify the Nash equilibria in the bottom-most nodes
 - Assume they'll be played if the game ever reaches these nodes
- For each node *h*, recursively compute a vector $v_h = (v_{h1}, ..., v_{hn})$ that gives every agent's equilibrium utility
 - > At each node h,
 - If *i* is the agent to move, then *i*'s equilibrium action is to move to a child *h*' of *h* for which *i*'s equilibrium utility v_{h'i} is highest

Backward Induction

- To find subgame-perfect equilibria, we can use **backward induction**
- Identify the Nash equilibria in the bottom-most nodes
 - Assume they'll be played if the game ever reaches these nodes

procedure backward-induction(h)

if $h \in Z$ then return $\mathbf{u}(h)$

bestv = $(-\infty, ..., -\infty)$

forall $a \in \chi(h)$ **do**

 $\mathbf{v} = \text{backward-induction}(\sigma(h, a))$

if $v[\rho(h)] > bestv[\rho(h)]$ then bestv = vreturn bestv

The Centipede Game

A Problem with Backward Induction

1, 0

- Can extend the centipede game to any length
- The only SPE is for each agent always to move *Left*
- But this isn't intuitively appealing
- Seems unlikely that one would want to choose *Left* near the start of the game
 - If the agents continue the game for several moves, they'll both get higher payoffs
- In lab experiments, subjects continue to choose *Right* until near the end of the game

Constant-Sum Centipede Game

Constant-Sum Centipede Game

The Minimax Algorithm

4, 1

R

1, 4

R

5, 0

5, 0

R

0, 5

3, 2 In constant-sum games, R only need to compute agent 1's SPE utility, u_1 **2**, 3 **3**, 2 • $u_2 = c - u_1$ R From the Minimax Theorem, **2**, 3 \succ at each node, agent 1's minmax value = agent 1's maxmin value = agent 1's SPE utility 4.1 **procedure** minimax(*h*) 1, 4 if $h \in Z$ then return $u_1(h)$ else if $\rho(h) = 1$ then return $\max_{a \in \gamma(h)} u_1(\sigma(h, a))$

else return $\min_{a \in \chi(h)} u_1(\sigma(h,a))$