CMSC 474, Introduction to Game Theory
Perfect-Information Extensive Form Games

Mohammad T. Hajiaghayi
University of Maryland

The Sharing Game

Suppose agents 1 and 2 are two children
Someone offers them two cookies, but only if they can agree how to share

them

Agent 1 chooses one of the following options:

> Agent 1 gets 2 cookies, agent 2 gets 0 cookies

> They each get 1 cookie

> Agent 1 gets 0 cookies, agent 2 gets 2 cookies

Agent 2 chooses to accept or reject the split:

> Accept => they each get their cookies(s)

> Otherwise, neither gets any

2-0

2’'s move

(0,0

(2,0)

1’s move

1-1

2’s move

(0,0)

(1,1)

0-2

2’s move

WS WS WS

(0,0

(0,2)

Extensive Form

e The sharing game is a game in extensive form
> A game representation that makes the temporal structure explicit
> Doesn’t assume agents act simultaneously

e Extensive form can be converted to normal form
> SO0 previous results carry over
> But there are additional results that depend on the temporal structure

e In a perfect-information game, the extensive form is a game tree:
> Choice (or nonterminal) node: place where an agent chooses an action
> Edge: an available action or move

_ _ 1’'s move
> Terminal node: a final outcome 2-0 - 0-2
> At each terminal node h, each 2's move 2's move 2's move

agent i has a utility u;(h) WS WS WS

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2

Notation from the Book (Section 4.1)

e H = {nonterminal nodes}
e Z = {terminal nodes}
e If hisa nonterminal node, then
> p(h) = the player to move at h
> x(h) = {all available actions at h}
> o(h,a) = node produced by action a at node h
> h’s children or successors = {o(h,a) : a € x(h)}
e If hisa node (either terminal or nonterminal), then
> h’s history = the sequence of actions leading from the root to h

> h’s descendants 2.0 1 0
= all nodes in the subtree rooted at h 1-1
® The book doesn’t give the nodes names 2 2 2

> The labels tell which agent I’%\<€S Ws WS
makes the next move

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2

Pure Strategies

e Pure strategy for agent i in a perfect-information game:
> Function telling what action to take at every node where it’s I’s choice
* i.e., every node h at which p(h) =i
e The book specifies pure strategies as lists of actions
> Which action at which node?

> Either assume a canonical ordering on the nodes,
or use different action names at different nodes

Sharing game:
e Agent1 has 3 pure strategies: S; = {2-0, 1-1, 0-2}

e Agent 2 has 8 pure strategies: 2.0 1 0.2
e S, ={(yes, yes, yes), (yes, yes, no), 1-1
(ves, no, yes), (yes, no, no), 2 2 2

(no, yes, yes), (no, yes, no), WS WS WS
(no, no, yes), (no, no, no)}
(0,00 (2,0 (0,00 (1,1 (0,00 (0,2

Updated 3/30/2015 Nau: Game Theory 5

" 1
Extensive form vs. N
normal form

2

2
Every game tree corresponds to an N ﬁ
equivalent normal-form game
: 3,8 8,3 9,5
The first step 1s to get all of the agents’ (3.8) 8.3) (55)

1
pure strategies w

Each pure strategy for i must specify an action at (2,10) (1,0)
every node where it’s I’s move

Example: the game tree shown here
> Agent 1 has four pure strategies:
° S1 - {(A’ G)’ (Av H)’ (B’ G)’ (B1 H)}

» Mathematically, (A, G) and (A, H) are different strategies,
even though action A makes the G-versus-H choice
Irrelevant

> Agent 2 also has four pure strategies:
* SZ = {(C1 E)! (C’ F)’ (D’ E)’ (D’ F)}

I 1
Extensive form vs. N
normal form ; ;
Once we have all of the pure strategies, w} ﬁ
we can rewrite the game in normal form

(3,8) (8,3) (55

1
Note that payoffs come from that of the unique G H
leaf which will be accessible from the root

Converting to normal form (2,10) (1,0)

introduces redundancy (CE) (CF) (DE) (DJF)

> 16 outcomes in the payoff matrix,
versus 5 outcomes in the game tree

> Payoff (3,8) occurs
* once in the game tree (AH) | 38 3,8 8,3 8,3

AG) | 38 |(38) | 83 | 83

« four times in the payoff matrix

- - 5 5 R
This can cause an exponential blowup (BG) | 55 | 210 | 55 | 210
(B,H) 1,0 5,5 1,0

1

Nash Equilibrium N
2 2
Theorem. Every perfect-information game C D E F
In extensive form has a pure-strategy Nash

equilibrium (3,8) (8,3) (5,5 1
> This theorem has been attributed to G H
Zermelo (1913), but there’s some
controversy about that (2,10) (1,0
Intuition: (CE) (CF) (D,E) (D,JF)

> Agents take turns, and everyone sees
what’s happened so far before making (A,G) | 38 3,8 8,3 8,3
a move

» So never need to introduce randomness (A,H) | 3.8 3,8 8,3 8,3
into action selection to find an

equilibrium (B,G) | 55 | 210 | 55 | 2,10
In our example, there are three pure-
strategy Nash equilibria (B,H) 10 55 1,0

Nash Equilibrium V\

2 2
The concept of a Nash equilibrium can be C D E F
too weak for use in extensive-form games
Recall that our example has three 38) (B3 (5 1
pure-strategy Nash equilibria: W
> {(AG), (CR)}

(2,10) (1,0)
> {(AH), (C.F)}

> {(B,H), (C.B)}

Here is {(B,H), (C,E)} with
the game in extensive form

(CE) (CF) (D,E) (D,F)

(AG) | 38 |(38) | 83 | 83

(AH) | 38 |(38) | 83 | 83

(B,G) | 55 2,10 | 55 | 2,10
(B,H) 1,0 5,5 1,0

Subgame-Perfect Equilibrium

Given a perfect-information extensive-form game G, the subgame of G
rooted at node h is the restriction of G to the descendants of h

Now we can define a refinement of a Nash equilibrium

A subgame-perfect equilibrium (SPE) is a strategy profile s such that for
every subgame G’ of G, the restriction of s to G’ is a Nash equilibrium of G’

> Since G itself Is is a subgame of G, every SPE is also a Nash
equilibrium

Every perfect-information extensive-form game has at least 1 SPE

> Can prove this by induction on the height of the game tree

Example

Recall that we have three Nash equilibria:
{(A, G), (C,F)}
{(A,H), (C,F)}
{(B, H), (C,E)} 5

7N
Consider this subgame:

> Foragent 1, (38 (83)
G strictly dominates H
> Thus H can’t be part of a Nash equilibrium

This excludes {(A, H), (C, F)} and {(B, H), (C, E)}
Just one subgame-perfect equilibrium
> {(AG), (CF)}

(5.5)

|

/X

1
7\

(2,10)

(1,0)

Backward Induction

e To find subgame-perfect equilibria, we can use backward induction

e Identify the Nash equilibria in the

bottom-most nodes 1(3,8)
> Assume they’ll be played if the N
game ever reaches these nodes 2(3,8) 2 (2,10)
e For each node h, recursively compute W E F
oy spens ety 68 €3 65 iew
> At each node h, ﬂ

« If i is the agent to move, then i’s (2,10) (1,0)
equilibrium action is to move to a child h' of h
for which 1’s equilibrium utility v,; Is highest

Backward Induction

e To find subgame-perfect equilibria, we can use backward induction

e Identify the Nash equilibria in the

bottom-most nodes 1(3,8)
A B
> Assume they’ll be played if the /\
game ever reaches these nodes 2(3,8) 2 (2,10)
ANAN
procedure backward-induction(h) 3.8) (83) (55) 1(2,10)

if h e Z then return u(h) ﬂ
bestv = (o, ..., —o0)

forall a € y(h) do (2,10) (1.,0)

v = backward-induction(o(h,a))

If v[p(h)] > bestv[p(h)] then bestv = v
return bestv

The Centipede Game

1,0
/%

e The players move in alternation
> Player 1 makes the first move

> Each player can go
either Left or Right

@ At each terminal node, the numbers are ,/®\

how many pieces of chocolate you’ll get

> Next to each nonterminal node,
I’ve put the SPE payoffs in red

A Problem with Backward Induction

1,0
Can extend the centipede
game to any length

The only SPE is for each
agent always to move Left
But this isn’t intuitively appealing

Seems unlikely that one
would want to choose Left

near the start of the game
> If the agents continue the game
for several moves, they’ll both /@\

get higher payoffs

In lab experiments, subjects continue to
choose Right until near the end of the game

Constant-Sum Centipede Game

3,2
Fa\

e Now consider a constant-sum version
of the centipede game

e Ateverynode, u,=5-u,

i
S
M

Constant-Sum Centipede Game

3,2
AN
2,3

3, 2 ’
L R
e | need two more volunteers

to play a constant-sum version 2 3 4,1
of the centipede game L R
e Ateverynode, u,=5-u, .

4, 1 ’
e Instead of having increasing payoffs for y R
both players, the sum of their payoffs is
always the same 1,4)
e In this case, backward induction gives
much more accurate results
5,0

The Minimax Algorithm
3,2
e [n constant-sum games,
only need to compute
agent 1°s SPE utility, u;
* U,=C—U,
e From the Minimax Theorem,

> at each node,

agent 1’s minmax value
= agent 1’s maxmin value
= agent 1’s SPE utility

procedure minimax(h) 14 /@\
acy(hU u;(o(h,a)) /®\

If h € Z then return u,(h)
else if p(h) = 1 then return max

else return min, _ ., U;(o(h,a)) 5,0 0.5

