
CMSC 474, Introduction to Game Theory

Perfect-Information Extensive Form Games

Mohammad T. Hajiaghayi

University of Maryland

The Sharing Game

 Suppose agents 1 and 2 are two children

 Someone offers them two cookies, but only if they can agree how to share

them

 Agent 1 chooses one of the following options:

 Agent 1 gets 2 cookies, agent 2 gets 0 cookies

 They each get 1 cookie

 Agent 1 gets 0 cookies, agent 2 gets 2 cookies

 Agent 2 chooses to accept or reject the split:

 Accept => they each get their cookies(s)

 Otherwise, neither gets any 2-0
1-1

0-2

no yes no yes no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

2’s move 2’s move 2’s move

1’s move

Extensive Form

 The sharing game is a game in extensive form

 A game representation that makes the temporal structure explicit

 Doesn’t assume agents act simultaneously

 Extensive form can be converted to normal form

 So previous results carry over

 But there are additional results that depend on the temporal structure

 In a perfect-information game, the extensive form is a game tree:

 Choice (or nonterminal) node: place where an agent chooses an action

 Edge: an available action or move

 Terminal node: a final outcome

 At each terminal node h, each

agent i has a utility ui(h)

2-0
1-1

0-2

no yes no yes no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

2’s move 2’s move 2’s move

1’s move

Notation from the Book (Section 4.1)

 H = {nonterminal nodes}

 Z = {terminal nodes}

 If h is a nonterminal node, then

  (h) = the player to move at h

 (h) = {all available actions at h}

  (h,a) = node produced by action a at node h

 h’s children or successors = { (h,a) : a  (h)}

 If h is a node (either terminal or nonterminal), then

 h’s history = the sequence of actions leading from the root to h

 h’s descendants

= all nodes in the subtree rooted at h

 The book doesn’t give the nodes names

 The labels tell which agent

makes the next move

2-0
1-1

0-2

no yes no yes no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

2 2 2

1

Nau: Game Theory 5Updated 3/30/2015

Pure Strategies
 Pure strategy for agent i in a perfect-information game:

 Function telling what action to take at every node where it’s i’s choice

• i.e., every node h at which  (h) = i

 The book specifies pure strategies as lists of actions

 Which action at which node?

 Either assume a canonical ordering on the nodes,

or use different action names at different nodes

Sharing game:

 Agent 1 has 3 pure strategies: S1 = {2-0, 1-1, 0-2}

 Agent 2 has 8 pure strategies:

 S2 = {(yes, yes, yes), (yes, yes, no),

(yes, no, yes), (yes, no, no),

(no, yes, yes), (no, yes, no),

(no, no, yes), (no, no, no)}

2-0
1-1

0-2

no yes no yes no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

2 2 2

1

Extensive form vs.

normal form

 Every game tree corresponds to an

equivalent normal-form game

 The first step is to get all of the agents’

pure strategies

 Each pure strategy for i must specify an action at

every node where it’s i’s move

 Example: the game tree shown here

 Agent 1 has four pure strategies:

• s1 = {(A, G), (A, H), (B, G), (B, H)}

› Mathematically, (A, G) and (A, H) are different strategies,

even though action A makes the G-versus-H choice

irrelevant

 Agent 2 also has four pure strategies:

• s2 = {(C, E), (C, F), (D, E), (D, F)}

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Extensive form vs.

normal form

 Once we have all of the pure strategies,

we can rewrite the game in normal form

 Note that payoffs come from that of the unique

leaf which will be accessible from the root

 Converting to normal form

introduces redundancy

 16 outcomes in the payoff matrix,

versus 5 outcomes in the game tree

 Payoff (3,8) occurs

• once in the game tree

• four times in the payoff matrix

 This can cause an exponential blowup

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Nash Equilibrium

 Theorem. Every perfect-information game

in extensive form has a pure-strategy Nash

equilibrium

 This theorem has been attributed to

Zermelo (1913), but there’s some

controversy about that

 Intuition:

 Agents take turns, and everyone sees

what’s happened so far before making

a move

 So never need to introduce randomness

into action selection to find an

equilibrium

 In our example, there are three pure-

strategy Nash equilibria

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Nash Equilibrium

 The concept of a Nash equilibrium can be

too weak for use in extensive-form games

 Recall that our example has three

pure-strategy Nash equilibria:

 {(A,G), (C,F)}

 {(A,H), (C,F)}

 {(B,H), (C,E)}

 Here is {(B,H), (C,E)} with

the game in extensive form

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Subgame-Perfect Equilibrium

 Given a perfect-information extensive-form game G, the subgame of G

rooted at node h is the restriction of G to the descendants of h

 Now we can define a refinement of a Nash equilibrium

 A subgame-perfect equilibrium (SPE) is a strategy profile s such that for

every subgame G of G, the restriction of s to G is a Nash equilibrium of G

 Since G itself is is a subgame of G, every SPE is also a Nash

equilibrium

 Every perfect-information extensive-form game has at least 1 SPE

 Can prove this by induction on the height of the game tree

Example

 Recall that we have three Nash equilibria:

{(A, G), (C, F)}

{(A, H), (C, F)}

{(B, H), (C, E)}

 Consider this subgame:

 For agent 1,

G strictly dominates H

 Thus H can’t be part of a Nash equilibrium

 This excludes {(A, H), (C, F)} and {(B, H), (C, E)}

 Just one subgame-perfect equilibrium

 {(A, G), (C, F)}

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Backward Induction

 To find subgame-perfect equilibria, we can use backward induction

 Identify the Nash equilibria in the

bottom-most nodes

 Assume they’ll be played if the

game ever reaches these nodes

 For each node h, recursively compute

a vector vh = (vh1, …, vhn) that gives

every agent’s equilibrium utility

 At each node h,

• If i is the agent to move, then i’s

equilibrium action is to move to a child h' of h

for which i’s equilibrium utility vh'i is highest

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1 (3,8)

(3,8) (2,10)

(2,10)

Backward Induction

 To find subgame-perfect equilibria, we can use backward induction

 Identify the Nash equilibria in the

bottom-most nodes

 Assume they’ll be played if the

game ever reaches these nodes

procedure backward-induction(h)

if h  Z then return u(h)

bestv = (–, …, –)

forall a  (h) do

v = backward-induction( (h,a))

if v[ (h)] > bestv[ (h)] then bestv = v

return bestv

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1 (3,8)

(3,8) (2,10)

(2,10)

The Centipede Game

 The players move in alternation

 Player 1 makes the first move

 Each player can go

either Left or Right

 At each terminal node, the numbers are

how many pieces of chocolate you’ll get

 Next to each nonterminal node,

I’ve put the SPE payoffs in red

A Problem with Backward Induction

 Can extend the centipede

game to any length

 The only SPE is for each

agent always to move Left

 But this isn’t intuitively appealing

 Seems unlikely that one

would want to choose Left

near the start of the game

 If the agents continue the game

for several moves, they’ll both

get higher payoffs

 In lab experiments, subjects continue to

choose Right until near the end of the game

Constant-Sum Centipede Game

 Now consider a constant-sum version

of the centipede game

 At every node, u2 = 5 – u1

Constant-Sum Centipede Game

 I need two more volunteers

to play a constant-sum version

of the centipede game

 At every node, u2 = 5 – u1

 Instead of having increasing payoffs for

both players, the sum of their payoffs is

always the same

 In this case, backward induction gives

much more accurate results

The Minimax Algorithm

 In constant-sum games,

only need to compute

agent 1’s SPE utility, u1

• u2 = c – u1

 From the Minimax Theorem,

 at each node,

agent 1’s minmax value

= agent 1’s maxmin value

= agent 1’s SPE utility

procedure minimax(h)

if h  Z then return u1(h)

else if  (h) = 1 then return maxa  (h) u1( (h,a))

else return mina  (h) u1( (h,a))

5, 0

3, 2

2, 3

4, 1

1, 4

3, 2

2, 3

4, 1

1, 4

5, 0

1

2

1

2

1

L

L

L

L

L

0, 5

R

R

R

R

R

