
CMSC 474, Introduction to Game Theory

Perfect-Information Extensive Form Games

Mohammad T. Hajiaghayi

University of Maryland

The Sharing Game

 Suppose agents 1 and 2 are two children

 Someone offers them two cookies, but only if they can agree how to share

them

 Agent 1 chooses one of the following options:

 Agent 1 gets 2 cookies, agent 2 gets 0 cookies

 They each get 1 cookie

 Agent 1 gets 0 cookies, agent 2 gets 2 cookies

 Agent 2 chooses to accept or reject the split:

 Accept => they each get their cookies(s)

 Otherwise, neither gets any 2-0
1-1

0-2

no yes no yes no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

2’s move 2’s move 2’s move

1’s move

Extensive Form

 The sharing game is a game in extensive form

 A game representation that makes the temporal structure explicit

 Doesn’t assume agents act simultaneously

 Extensive form can be converted to normal form

 So previous results carry over

 But there are additional results that depend on the temporal structure

 In a perfect-information game, the extensive form is a game tree:

 Choice (or nonterminal) node: place where an agent chooses an action

 Edge: an available action or move

 Terminal node: a final outcome

 At each terminal node h, each

agent i has a utility ui(h)

2-0
1-1

0-2

no yes no yes no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

2’s move 2’s move 2’s move

1’s move

Notation from the Book (Section 4.1)

 H = {nonterminal nodes}

 Z = {terminal nodes}

 If h is a nonterminal node, then

 (h) = the player to move at h

 (h) = {all available actions at h}

 (h,a) = node produced by action a at node h

 h’s children or successors = { (h,a) : a (h)}

 If h is a node (either terminal or nonterminal), then

 h’s history = the sequence of actions leading from the root to h

 h’s descendants

= all nodes in the subtree rooted at h

 The book doesn’t give the nodes names

 The labels tell which agent

makes the next move

2-0
1-1

0-2

no yes no yes no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

2 2 2

1

Nau: Game Theory 5Updated 3/30/2015

Pure Strategies
 Pure strategy for agent i in a perfect-information game:

 Function telling what action to take at every node where it’s i’s choice

• i.e., every node h at which (h) = i

 The book specifies pure strategies as lists of actions

 Which action at which node?

 Either assume a canonical ordering on the nodes,

or use different action names at different nodes

Sharing game:

 Agent 1 has 3 pure strategies: S1 = {2-0, 1-1, 0-2}

 Agent 2 has 8 pure strategies:

 S2 = {(yes, yes, yes), (yes, yes, no),

(yes, no, yes), (yes, no, no),

(no, yes, yes), (no, yes, no),

(no, no, yes), (no, no, no)}

2-0
1-1

0-2

no yes no yes no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

2 2 2

1

Extensive form vs.

normal form

 Every game tree corresponds to an

equivalent normal-form game

 The first step is to get all of the agents’

pure strategies

 Each pure strategy for i must specify an action at

every node where it’s i’s move

 Example: the game tree shown here

 Agent 1 has four pure strategies:

• s1 = {(A, G), (A, H), (B, G), (B, H)}

› Mathematically, (A, G) and (A, H) are different strategies,

even though action A makes the G-versus-H choice

irrelevant

 Agent 2 also has four pure strategies:

• s2 = {(C, E), (C, F), (D, E), (D, F)}

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Extensive form vs.

normal form

 Once we have all of the pure strategies,

we can rewrite the game in normal form

 Note that payoffs come from that of the unique

leaf which will be accessible from the root

 Converting to normal form

introduces redundancy

 16 outcomes in the payoff matrix,

versus 5 outcomes in the game tree

 Payoff (3,8) occurs

• once in the game tree

• four times in the payoff matrix

 This can cause an exponential blowup

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Nash Equilibrium

 Theorem. Every perfect-information game

in extensive form has a pure-strategy Nash

equilibrium

 This theorem has been attributed to

Zermelo (1913), but there’s some

controversy about that

 Intuition:

 Agents take turns, and everyone sees

what’s happened so far before making

a move

 So never need to introduce randomness

into action selection to find an

equilibrium

 In our example, there are three pure-

strategy Nash equilibria

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Nash Equilibrium

 The concept of a Nash equilibrium can be

too weak for use in extensive-form games

 Recall that our example has three

pure-strategy Nash equilibria:

 {(A,G), (C,F)}

 {(A,H), (C,F)}

 {(B,H), (C,E)}

 Here is {(B,H), (C,E)} with

the game in extensive form

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Subgame-Perfect Equilibrium

 Given a perfect-information extensive-form game G, the subgame of G

rooted at node h is the restriction of G to the descendants of h

 Now we can define a refinement of a Nash equilibrium

 A subgame-perfect equilibrium (SPE) is a strategy profile s such that for

every subgame G of G, the restriction of s to G is a Nash equilibrium of G

 Since G itself is is a subgame of G, every SPE is also a Nash

equilibrium

 Every perfect-information extensive-form game has at least 1 SPE

 Can prove this by induction on the height of the game tree

Example

 Recall that we have three Nash equilibria:

{(A, G), (C, F)}

{(A, H), (C, F)}

{(B, H), (C, E)}

 Consider this subgame:

 For agent 1,

G strictly dominates H

 Thus H can’t be part of a Nash equilibrium

 This excludes {(A, H), (C, F)} and {(B, H), (C, E)}

 Just one subgame-perfect equilibrium

 {(A, G), (C, F)}

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1

Backward Induction

 To find subgame-perfect equilibria, we can use backward induction

 Identify the Nash equilibria in the

bottom-most nodes

 Assume they’ll be played if the

game ever reaches these nodes

 For each node h, recursively compute

a vector vh = (vh1, …, vhn) that gives

every agent’s equilibrium utility

 At each node h,

• If i is the agent to move, then i’s

equilibrium action is to move to a child h' of h

for which i’s equilibrium utility vh'i is highest

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1 (3,8)

(3,8) (2,10)

(2,10)

Backward Induction

 To find subgame-perfect equilibria, we can use backward induction

 Identify the Nash equilibria in the

bottom-most nodes

 Assume they’ll be played if the

game ever reaches these nodes

procedure backward-induction(h)

if h Z then return u(h)

bestv = (–, …, –)

forall a (h) do

v = backward-induction((h,a))

if v[(h)] > bestv[(h)] then bestv = v

return bestv

A B

C D

G H

E F

(3,8) (8,3)

(2,10) (1,0)

(5,5) 1

2 2

1 (3,8)

(3,8) (2,10)

(2,10)

The Centipede Game

 The players move in alternation

 Player 1 makes the first move

 Each player can go

either Left or Right

 At each terminal node, the numbers are

how many pieces of chocolate you’ll get

 Next to each nonterminal node,

I’ve put the SPE payoffs in red

A Problem with Backward Induction

 Can extend the centipede

game to any length

 The only SPE is for each

agent always to move Left

 But this isn’t intuitively appealing

 Seems unlikely that one

would want to choose Left

near the start of the game

 If the agents continue the game

for several moves, they’ll both

get higher payoffs

 In lab experiments, subjects continue to

choose Right until near the end of the game

Constant-Sum Centipede Game

 Now consider a constant-sum version

of the centipede game

 At every node, u2 = 5 – u1

Constant-Sum Centipede Game

 I need two more volunteers

to play a constant-sum version

of the centipede game

 At every node, u2 = 5 – u1

 Instead of having increasing payoffs for

both players, the sum of their payoffs is

always the same

 In this case, backward induction gives

much more accurate results

The Minimax Algorithm

 In constant-sum games,

only need to compute

agent 1’s SPE utility, u1

• u2 = c – u1

 From the Minimax Theorem,

 at each node,

agent 1’s minmax value

= agent 1’s maxmin value

= agent 1’s SPE utility

procedure minimax(h)

if h Z then return u1(h)

else if (h) = 1 then return maxa (h) u1((h,a))

else return mina (h) u1((h,a))

5, 0

3, 2

2, 3

4, 1

1, 4

3, 2

2, 3

4, 1

1, 4

5, 0

1

2

1

2

1

L

L

L

L

L

0, 5

R

R

R

R

R

