CMSC 474, Introduction to Game Theory 15. Imperfect-Information Games

Mohammad T. Hajiaghayi University of Maryland

Imperfect-Information Games

- So far, we've assumed that players in an extensive-form game always know what node they're at
 - Know all prior choices
 - Both theirs and the others'
 - > Thus "perfect information" games
- But sometimes players
 - Don't know all the actions the others took or
 - Don't recall all their past actions
- Sequencing lets us capture some of this ignorance:
 - > An earlier choice is made without knowledge of a later choice
- But it doesn't let us represent the case where two agents make choices at the same time, in mutual ignorance of each other

Definition

- An **imperfect-information** game is an extensive-form game in which each agent's choice nodes are partitioned into **information sets**
 - > An information set = {all choice nodes an agent *might* be at}
 - The nodes in an information set are indistinguishable to the agent
 - So all have the same set of actions
 - > Agent *i*'s information sets are $I_{i1}, ..., I_{im}$ for some *m*, where
 - $I_{i1} \cup \ldots \cup I_{im} = \{ \text{all nodes where it's agent } i \text{'s move} \}$
 - $I_{ij} \cap I_{ik} = \emptyset$ for all $j \neq k$
 - For all nodes $x, y \in I_{ij}$,
 - > {all available actions at x} = {all available actions at y}
- A perfect-information game is a special case in which each I_{ij} contains just one node

Example

• Below, agent 1 has two information sets:

- > $I_{11} = \{w\}$
- > $I_{12} = \{y, z\}$
- > In I_{12} , agent 1 doesn't know whether agent 2's move was C or D
- Agent 2 has just one information set:
 - > $I_{21} = \{x\}$

Strategies

- A **pure strategy** for agent *i* is a function *s_i* that selects an available action at each of *i*'s information sets
 - > $s_i(I)$ = agent *i*'s action in information set *I*
- Thus $\{all \text{ pure strategies for } i\}$ is the Cartesian product
 - > {actions available in I_{i1} } × ... × {actions available in I_{im} }
- Agent 1's pure strategies:
 - $\{A,B\} \times \{E,F\} = \{(A,E), (A,F), (B,E), (B,F)\}$
- Agent 2's pure strategies: {C, D}

Extensive Form → Normal Form

- Any extensive-form imperfect-information game can be transformed into an equivalent normal-form game
- Same strategies and same payoffs
 - > Thus same Nash equilibria, same Pareto optimal strategy profiles, etc.
- Just like we did it for perfect-information games
 - Create an *n*-dimensional payoff matrix in which the *i*'th dimension corresponds to agent *i*'s pure strategies

	С	D	
(A,E)	0, 0	2, 4	
(A,F)	2, 4	0, 0	No. Change
(B ,E)	1, 1	1, 1	
(B,F)	1, 1	1, 1	11 T 15

Normal Form → Extensive Form

- Any normal-form game can be transformed into an equivalent extensiveform imperfect-information game
 - > *n*-level game tree in which each agent has exactly one information set
- Same strategies and same payoffs → same Nash equilibria, same Pareto optimal strategy profiles, etc.
- Example:
 - Two imperfect-information extensive-form games that are equivalent to the Prisoner's Dilemma:

	С	D
С	3, 3	0, 5
D	5, 0	1, 1

Behavioral Strategies

- In imperfect-information extensive-form games, we can define a new class of strategies called behavioral strategies
 - An agent's (probabilistic) choice at each node is independent of his/her choices at other nodes
- Consider the imperfect-info game shown here:
- A behavioral strategy for Agent 1:
 - > At node a, {(0.5, A), (0.5, B)}
 - > At node g, {(0.3, G), (0.7, H)}
- Is there an equivalent mixed strategy?
 - > What do we mean by "equivalent"?

Behavioral Strategies

- In imperfect-information extensive-form games, we can define a new class of strategies called **behavioral strategies**
 - An agent's (probabilistic) choice at each node is independent of his/her choices at other nodes
- Consider the imperfect-info game shown here:
- A behavioral strategy for Agent 1:
 - > At node a, {(0.5, A), (0.5, B)}
 - > At node g, {(0.3, G), (0.7, H)}
- Is there an equivalent mixed strategy?
 - > What do we mean by "equivalent"?
 - Two strategies s_i and s_i' are equivalent if for every fixed strategy profile s_{-i} of the remaining agents, s_i and s_i' give us the same probabilities on outcomes
- An equivalent mixed strategy:
 - > $\{(0.15, (A, G)); (0.35, (A, H)); (0.15, (B, G)); (0.35, (B, H))\}$

Behavioral vs. Mixed Strategies

• Consider the following mixed strategy:

- > {(0.6, (A, G)), (0.4, (B, H))}
- The choices at the two nodes aren't independent
 - > Choose A at $a \Leftrightarrow$ choose G at g
 - > Choose B at $a \Leftrightarrow$ choose H at g
- Thus not always easy to find an equivalent behavioral strategy.

Behavioral vs. Mixed Strategies

- In some games, there are
 - > mixed strategies that have no equivalent behavioral strategy
 - behavioral strategies that have no equivalent mixed strategy
- Thus mixed and behavioral strategies can produce different sets of equilibria
- Consider the game shown here:
 - At both a and b, agent 1's information set is {a, b}
 - > How can this ever happen?

Behavioral vs. Mixed Strategies

- Mixed strategy {(p, L), (1-p, R)}: agent 1 chooses L or R randomly, but commits to it
 - > Choose L \rightarrow the game will end at d
 - > Choose $R \rightarrow$ the game will end at f or g
 - > The game will **never** end at node e
- Behavioral strategy {(q, L), (1–q, R)}: every time agent 1 is in {a, b}, agent 1 re-makes the choice
 - > Pr[game ends at e] = q(1-q)
 - > Pr[game ends at e] > 0, except when q = 0 or q = 1

• Only two cases in which there are equivalent mixed and behavioral strategies

- > If p = q = 0, then both strategies are the pure strategy L
- > If p = q = 1, then both strategies are the pure strategy R
- In all other cases, the mixed and behavioral strategies produce different probability distributions over the outcomes

