CMSC 474, Introduction to Game Theory

15. Imperfect-Information Games

Mohammad T. Hajiaghayi
University of Maryland

Imperfect-Information Games

- So far, we've assumed that players in an extensive-form game always know what node they're at
> Know all prior choices
- Both theirs and the others'
> Thus "perfect information" games
- But sometimes players
$>$ Don't know all the actions the others took or
> Don't recall all their past actions
- Sequencing lets us capture some of this ignorance:
> An earlier choice is made without knowledge of a later choice
- But it doesn't let us represent the case where two agents make choices at the same time, in mutual ignorance of each other

Definition

- An imperfect-information game is an extensive-form game in which each agent's choice nodes are partitioned into information sets
> An information set $=$ \{all choice nodes an agent might be at $\}$
- The nodes in an information set are indistinguishable to the agent
- So all have the same set of actions
> Agent i 's information sets are $I_{i 1}, \ldots, I_{i m}$ for some m, where
- $I_{i 1} \cup \ldots \cup I_{i m}=\{$ all nodes where it's agent i 's move $\}$
- $I_{i j} \cap I_{i k}=\varnothing$ for all $j \neq k$
- For all nodes $x, y \in I_{i j}$,
, $\{$ all available actions at $x\}=\{$ all available actions at $y\}$
- A perfect-information game is a special case in which each $I_{i j}$ contains just one node

Example

- Below, agent 1 has two information sets:
$>I_{11}=\{w\}$
$>I_{12}=\{y, z\}$
$>$ In I_{12}, agent 1 doesn't know whether agent 2 's move was C or D
- Agent 2 has just one information set:
$>I_{21}=\{x\}$

Agent 1

Strategies

- A pure strategy for agent i is a function s_{i} that selects an available action at each of i 's information sets
$>s_{i}(I)=$ agent i 's action in information set I
- Thus \{all pure strategies for $i\}$ is the Cartesian product
$>\left\{\right.$ actions available in $\left.I_{i 1}\right\} \times \ldots \times\left\{\right.$ actions available in $\left.I_{i m}\right\}$
- Agent 1's pure strategies:
$\{A, B\} \times\{E, F\}=\{(A, E),(A, F),(B, E),(B, F)\}$
- Agent 2's pure strategies: $\{\mathrm{C}, \mathrm{D}\}$

Extensive Form \rightarrow Normal Form

- Any extensive-form imperfect-information game can be transformed into an equivalent normal-form game
- Same strategies and same payoffs
> Thus same Nash equilibria, same Pareto optimal strategy profiles, etc.
- Just like we did it for perfect-information games
$>$ Create an n-dimensional payoff matrix in which the i 'th dimension corresponds to agent i 's pure strategies

Normal Form \rightarrow Extensive Form

- Any normal-form game can be transformed into an equivalent extensiveform imperfect-information game
$>n$-level game tree in which each agent has exactly one information set
- Same strategies and same payoffs \rightarrow same Nash equilibria, same Pareto optimal strategy profiles, etc.
- Example:
> Two imperfect-information extensive-form games that are equivalent to the Prisoner's Dilemma:

C	C	D
C	3,3	0,5
	5,0	1,1

Behavioral Strategies

- In imperfect-information extensive-form games, we can define a new class of strategies called behavioral strategies
> An agent's (probabilistic) choice at each node is independent of his/her choices at other nodes
- Consider the imperfect-info game shown here:
- A behavioral strategy for Agent 1 :
$>$ At node $a,\{(0.5, \mathrm{~A}),(0.5, \mathrm{~B})\}$
> At node $g,\{(0.3, \mathrm{G}),(0.7, \mathrm{H})\}$
- Is there an equivalent mixed strategy?
> What do we mean by "equivalent"?

Behavioral Strategies

- In imperfect-information extensive-form games, we can define a new class of strategies called behavioral strategies
> An agent's (probabilistic) choice at each node is independent of his/her choices at other nodes
- Consider the imperfect-info game shown here:
- A behavioral strategy for Agent 1 :
$>$ At node $a,\{(0.5, \mathrm{~A}),(0.5, \mathrm{~B})\}$
> At node $g,\{(0.3, \mathrm{G}),(0.7, \mathrm{H})\}$
- Is there an equivalent mixed strategy?
> What do we mean by "equivalent"?

> Two strategies s_{i} and $s_{i}{ }^{\prime}$ are equivalent if for every fixed strategy profile \mathbf{s}_{-i} of the remaining agents, s_{i} and $s_{i}{ }^{\prime}$ give us the same probabilities on outcomes
- An equivalent mixed strategy:
$>\{(0.15,(\mathrm{~A}, \mathrm{G})) ;(0.35,(\mathrm{~A}, \mathrm{H})) ;(0.15,(\mathrm{~B}, \mathrm{G})) ;(0.35,(\mathrm{~B}, \mathrm{H}))\}$

Behavioral vs. Mixed Strategies

- Consider the following mixed strategy:
$>\{(0.6,(\mathrm{~A}, \mathrm{G})),(0.4,(\mathrm{~B}, \mathrm{H}))\}$
- The choices at the two nodes aren't independent
> Choose A at $a \Leftrightarrow$ choose G at g
$>$ Choose B at $a \Leftrightarrow$ choose H at g
- Thus not always easy to find an equivalent behavioral strategy.

Behavioral vs. Mixed Strategies

- In some games, there are
> mixed strategies that have no equivalent behavioral strategy
> behavioral strategies that have no equivalent mixed strategy
- Thus mixed and behavioral strategies can produce different sets of equilibria
- Consider the game shown here:
> At both a and b, agent 1 's information set is $\{a, b\}$
$>$ How can this ever happen?

Behavioral vs. Mixed Strategies

- Mixed strategy $\{(p, \mathrm{~L}),(1-p, \mathrm{R})\}$: agent 1 chooses L or R randomly, but commits to it
> Choose $\mathrm{L} \rightarrow$ the game will end at d
> Choose $\mathrm{R} \rightarrow$ the game will end at f or g
> The game will never end at node e

- Behavioral strategy $\{(q, \mathrm{~L}),(1-q, \mathrm{R})\}$:
every time agent 1 is in $\{a, b\}$, agent 1 re-makes the choice
$>\operatorname{Pr}[$ game ends at $e]=q(1-q)$
$>\operatorname{Pr}[$ game ends at $e]>0$, except when $q=0$ or $q=1$
- Only two cases in which there are equivalent mixed and behavioral strategies
> If $p=q=0$, then both strategies are the pure strategy L
$>$ If $p=q=1$, then both strategies are the pure strategy R
- In all other cases, the mixed and behavioral strategies produce different probability distributions over the outcomes

