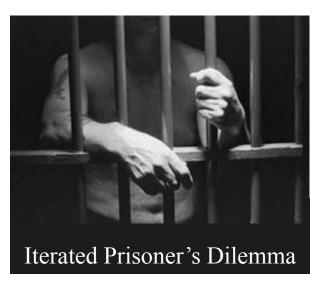
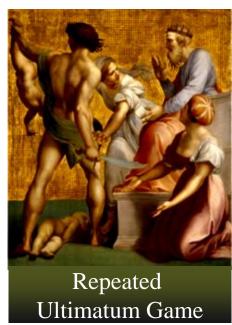
CMSC 474, Introduction to Game Theory Repeated Games

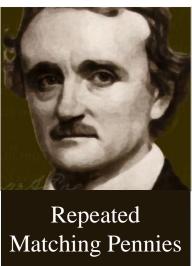
Mohammad T. Hajiaghayi University of Maryland

Repeated Games

• Used by game theorists, computer scientists, economists, social and behavioral scientists as highly simplified models of various real-world situations







Finitely Repeated Games

- In repeated games, some game G is played multiple times by the same set of agents
 - > G is called the stage game
 - Usually (but not always) a normalform game
 - ➤ Each occurrence of *G* is called an **iteration**, **round**, or **stage**
- Usually each agent knows what all the agents did in the previous iterations, but not what they're doing in the current iteration
 - Thus, imperfect information with perfect recall (an agent never forgets anything he/she knew earlier)

Usually each agent's payoff function is additive

Iterated Prisoner's Dilemma, 2 iterations:

Agent 2:

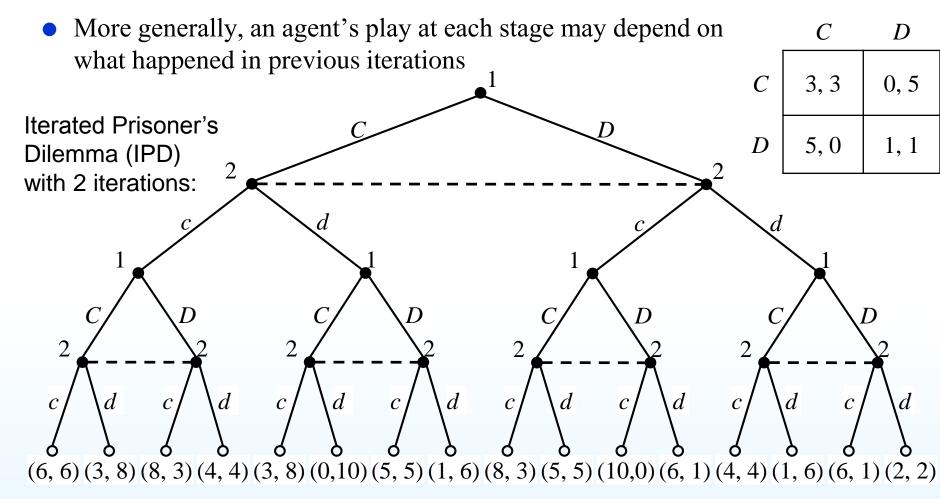
Agent 1:

Round 1: *C*Round 2: *D*

Total payoff: 3+5 = 5 3+0 = 3

Strategies

- The repeated game has a much bigger strategy space than the stage game
- One kind of strategy is a **stationary strategy**:
 - Use the same strategy in every stage game



Examples

Some well-known IPD strategies:

- **AllC**: always cooperate
- **AllD**: always defect
- **Grim**: cooperate until the other agent defects, then defect forever
- **Tit-for-Tat** (**TFT**): on 1st move, cooperate. On *n*th move, repeat the other agent's $(n-1)^{th}$ move
- Tit-for-Two-Tats (TFTT): like TFT, but
- only retaliates if the other agent defects twice in a row **Tester**: defect on round 1. If the other agent retaliates,
- play TFT. Otherwise, alternately cooperate and defect Pavlov: on 1st round, cooperate. Thereafter,
 - win => use same action on next round; lose => switch to the other action

("win" means 3 or 5 points, "lose" means 0 or 1 point)

TFT, or TFT, or Pavlov Pavlov \mathbf{C} \mathbf{C}

AllC.

Grim,

AllC,

Grim,

TFT or

Grim AllD

D

 \boldsymbol{D}

D

D

 \boldsymbol{D}

D

TFT Tester

Pavlov AllD DD D

D

 \boldsymbol{D}

TFTT Tester

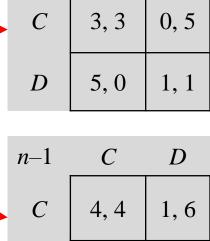
D

Backward Induction

- If the number of iterations is finite and all players know what it is, we can use backward induction to find a subgame-perfect equilibrium
- This time it's simpler than game-tree search
 - > Regardless of what move you make, the next state is always the same
 - Another instance of the stage game
 - > The only difference is how many points you've accumulated so far
- First calculate the SPE actions for round *n* (the last iteration)
- Then for round j = n-1, n-2, ..., 1,
 - Common knowledge of rationality \rightarrow everyone will play their SPE actions **after** round j
 - Construct a payoff matrix showing what the cumulative payoffs will be from round *j* onward
 - From this, calculate what the SPE actions will be at round j

Example

- *n* repetitions of the Prisoner's Dilemma
- Round *n* (the last round)
 - \triangleright SPE profile is (D,D); each player gets 1
- Case j = n-1:
 - > If everyone plays their SPE actions after round j, then
 - Cumulative payoffs = 1 + payoffs at round j
 - SPE actions at round j are (D,D); each player gets 2
- Case j = n-2:
 - > If everyone plays SPE actions after round j, then
 - Cumulative payoffs = 2 + payoffs at round j -
 - SPE actions at round j are (D,D); each player gets 3
- The SPE is to play (D,D) on every round
- As in the Centipede game, there are both empirical and theoretical criticisms



6, 1

n

D

n-2

C	D
5, 5	2, 7

2, 2

)	7, 2	3, 3

Two-Player Zero-Sum Repeated Games

- In a two-player zero-sum repeated game, the SPE is for every player to play a minimax strategy at every round
- Your minimax strategy is best for you if the other agents also use their minimax strategies
- In some cases, the other agents *won't* use those strategies
 - ➤ If you can predict their actions accurately, you may be able to do much better than the minimax strategy would do
- Why won't the other agents use their minimax strategies?
 - Because they may be trying to predict your actions too

Roshambo (Rock, Paper, Scissors)

A_2	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

- Nash equilibrium for the stage game:
 - \triangleright choose randomly, P=1/3 for each move
- Nash equilibrium for the repeated game:
 - \rightarrow always choose randomly, P=1/3 for each move
- Expected payoff = 0

Roshambo (Rock, Paper, Scissors)

A_1	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

- 1999 international roshambo programming competition www.cs.ualberta.ca/~darse/rsbpc1.html
 - > Round-robin tournament:
 - 55 programs, 1000 iterations for each pair of programs
 - Lowest possible score = -55000; highest possible score = 55000
 - Average over 25 tournaments:
 - Lowest score (*Cheesebot*): –36006
 - Highest score (*Iocaine Powder*): 13038
 - http://www.veoh.com/watch/e1077915X5GNatn

Infinitely Repeated Games

- An infinitely repeated game in extensive form would be an infinite tree
 - > Payoffs can't be attached to any terminal nodes
- Let $r_i^{(1)}$, $r_i^{(2)}$, ... be an infinite sequence of payoffs for agent i
 - > the sum usually is infinite, so it can't be i's payoff
- Two common ways around this problem:
- **1.** Average reward: average over the first k iterations; let $k \to \infty$

$$\lim_{k\to\infty}\sum_{j=1}^k r_i^{(j)}/k$$

- **2. Future discounted reward:** $\mathring{a}_{i=1}^{*} b^{j} r_{i}^{(j)}$
 - $\beta \in [0,1)$ is a constant called the *discount factor*
 - > Two possible interpretations:
 - 1. The agent cares more about the present than the future
 - 2. At each round, the game ends with probability 1β

Nash Equilibria

- What are the Nash Equilibria in an infinitely repeated game?
 - Often many more than if the game were finitely repeated
 - ➤ Infinitely many Nash equilibria for the infinitely repeated prisoner's dilemma
- There's a "folk theorem" that tells what the possible equilibrium **payoffs** are in repeated games, if we use average rewards
- First we need some definitions ...

Feasible Payoff Profiles

- A payoff profile $\mathbf{r} = (r_1, r_2, ..., r_n)$ is **feasible** if it is a convex rational combination of G's possible outcomes
 - \triangleright i.e., for every action profile \mathbf{a}_j there is a rational nonnegative number c_j such that $\sum_i c_i = 1$ and $\sum_i c_i \mathbf{u}(\mathbf{a}_i) = \mathbf{r}$
- Intuitive meaning:
 - There's a finite sequence of action profiles for which the average reward profile is **r**
- Example: in the Prisoner's Dilemma,

$$\mathbf{u}(C,C) = (3,3)$$
 $\mathbf{u}(C,D) = (0,5)$
 $\mathbf{u}(D,C) = (5,0)$ $\mathbf{u}(D,D) = (1,1)$

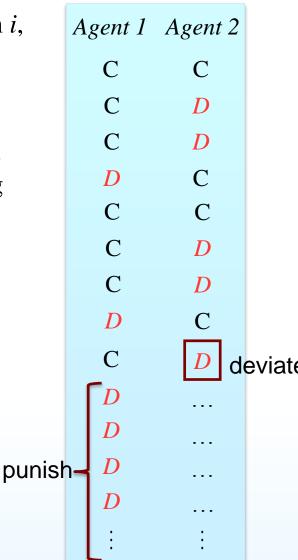
- $\sim \frac{1}{4} \mathbf{u}(C,C) + \frac{1}{2} \mathbf{u}(C,D) + \frac{1}{4} \mathbf{u}(D,C) + 0 \mathbf{u}(D,D) = (8/4, 13/4)$
 - so (2, 13/4) is feasible
- > (5,5) isn't feasible; no convex combination can produce it
- \triangleright $(\pi/2, \pi/2)$ isn't feasible; no **rational** convex combination can produce it

Keep repeating this sequence:

Agent 1	Agent 2
C	C
С	D
C	D
D	C

Enforceable Payoff Profiles

- A payoff profile $\mathbf{r} = (r_1, ..., r_n)$ is **enforceable** if for each i,
 - $ightharpoonup r_i \ge \text{player } i$'s minimax value in G
- Intuitive meaning:
 - If *i* deviates from the sequence of action profiles that produces \mathbf{r} , the other agents can punish *i* by reducing *i*'s average reward to $\leq i$'s minimax value
- The other agents can do this by using **grim trigger** strategies:
 - Generalization of the Grim strategy
 - If any agent *i* deviates from the sequence of actions it is supposed to perform, then the other agents punish *i* forever by playing their minimax strategies against *i*



The Theorem

Theorem: If G is infinitely repeated game with average rewards, then

- ➤ If there's a Nash equilibrium with payoff profile **r**, then **r** is enforceable
- ➤ If **r** is both feasible and enforceable, then there's a Nash equilibrium with payoff profile **r**

Summary of the proof:

- **Part 1**: Use the definitions of minimax and best-response to show that in every equilibrium, each agent i's average payoff $\geq i$'s minimax value
- Part 2: Show how to construct a Nash equilibrium that gives each agent i an average payoff r_i
 - The agents are grim-trigger strategies that cycle in lock-step through a sequence of game outcomes $\mathbf{r}^{(1)}$, $\mathbf{r}^{(2)}$, ..., $\mathbf{r}^{(n)}$ such that $\mathbf{r} = \mathbf{u}(\mathbf{r}^{(1)}) + \mathbf{u}(r^{(2)}) + ... + \mathbf{u}(r^{(n)})$
 - No agent can do better by deviating, because the others will punish itNash equilibrium

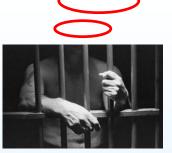
Iterated Prisoner's Dilemma

• For a finitely iterated game with a large number of iterations, the practical effect can be roughly the same as if it were infinite

	\boldsymbol{C}	D	
C	3, 3	0, 5	
D	5, 0	1, 1	

- E.g., the Iterated Prisoner's Dilemma
- Widely used to study the emergence of cooperative behavior among agents
 - e.g., Axelrod (1984),The Evolution of Cooperation
- Axelrod ran a famous set of tournaments
 - People contributed strategies encoded as computer programs
 - Axelrod played them against each other

If I defect now, he might punish me by defecting next time



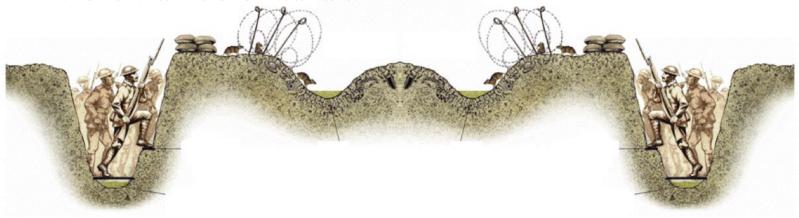
TFT with Other Agents

- In Axelrod's tournaments, TFT usually did best
 - » It could establish and maintain cooperations with many other agents
 - » It could prevent malicious agents from taking advantage of it

	AllC, TFT, TFTT, Grim,		
TFT	or Pavlov	TFT $AllD$	TFT Tester
C	C	\mathbf{C} \mathbf{D}	\mathbf{C} \mathbf{D}
C	\mathbf{C}	D D	D C
C	C	D D	C C
C	\mathbf{C}	D D	C C
C	C	D D	C C
C	C	D D	C C
C	С	D D	C C
•	:	: :	: :

Example:

• A real-world example of the IPD, described in Axelrod's book:



- Incentive to cooperate:
 - ➤ If I attack the other side, then they'll retaliate and I'll get hurt
 - ➤ If I don't attack, maybe they won't either
- Result: evolution of cooperation
 - Although the two infantries were supposed to be enemies, they avoided attacking each other

Summary

- Topics covered:
 - > Finitely repeated games
 - > Infinitely repeated games
 - Evolution of cooperation