CMSC 474, Introduction to Game Theory

18. Bayesian Games \&
 Games of Incomplete Information

Mohammad T. Hajiaghayi
University of Maryland

Introduction

- All the kinds of games we've looked at so far have assumed that everything relevant about the game being played is common knowledge to all the players:
$>$ the number of players
> the actions available to each
> the payoff vector associated with each action vector
- True even for imperfect-information games
> The actual moves aren't common knowledge, but the game is
- We'll now consider games of incomplete (not imperfect) information
> Players are uncertain about the game being played

Example

- Consider the payoff matrix shown here
> ε is a small positive constant; Agent 1 knows its value
- Agent 1 doesn't know the values of a, b, c, d
> Thus the matrix represents a set of games
> Agent 1 doesn't know which of these games is the one being played

	L	R
T	$100, a$	$1-\epsilon, b$
B	2, c	1, d

- Agent 1 wants a strategy that makes sense despite this lack of knowledge
- If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a maxmin, or "safety level," strategy
- minimum payoff of T is $1-\varepsilon$
- minimum payoff of B is 1
> So agent l's maxmin strategy is B

Bayesian Games

- Suppose we know the set \boldsymbol{G} of all possible games and we have enough information to put a probability distribution over the games in \boldsymbol{G}
- A Bayesian Game is a class of games \boldsymbol{G} that satisfies two fundamental conditions
- Condition 1:
> The games in \boldsymbol{G} have the same number of agents, and the same strategy space (set of possible strategies) for each agent. The only difference is in the payoffs of the strategies.
- This condition isn't very restrictive
> Other types of uncertainty can be reduced to the above, by reformulating the problem

Example

- Suppose we don't know whether player 2 only has strategies L and R, or also an additional strategy C :

- If player 2 doesn't have strategy C , this is equivalent to having a strategy C that's strictly dominated by other strategies:

Game $G_{1}{ }^{\prime}$	U	L	C	R
		1,1	0, -100	1,3
	D	0,5	$2,-100$	1,13

$>$ The Nash equilibria for $G_{1}{ }^{\prime}$ are the same as the Nash equilibria for G_{1}

- We've reduced the problem to whether C 's payoffs are those of $G_{1}{ }^{\prime}$ or G_{2}

Bayesian Games

- Condition 2 (common prior):
$>$ The probability distribution over the games in \boldsymbol{G} is common knowledge (i.e., known to all the agents)
- So a Bayesian game defines
$>$ the uncertainties of agents about the game being played,
$>$ what each agent believes the other agents believe about the game being played
- The beliefs of the different agents are posterior probabilities
> Combine the common prior distribution with individual "private signals" (what's "revealed" to the individual players)
- The common-prior assumption rules out whole families of games
> But it greatly simplifies the theory, so most work in game theory uses it
- There are some examples of games that don't satisfy Condition 2

Definitions of Bayesian Games

- The book discusses three different ways to define Bayesian games
> All are
- equivalent (ignoring a few subtleties)
- useful in some settings
- intuitive in their own way
- The first definition (Section 7.1.1) is based on information sets
- A Bayesian game consists of
> a set of games that differ only in their payoffs
> a common (i.e., known to all players) prior distribution over them
> for each agent, a partition structure (set of information sets) over the games
- Formal definition on the next page

7.1.1 Definition based on Information Sets

- A Bayesian game is a 4-tuple (N, G, P, I) where:
$>N$ is a set of agents
$>G$ is a set of N-agent games
$>$ For every agent i, every game in G has the same strategy space
$\Rightarrow P$ is a common prior over G
- common: common knowledge (known to all the agents)
- prior: probability before learning any additional info
$>I=\left(I_{1}, \ldots, I_{N}\right)$ is a tuple of partitions of G, one for each agent
- Information sets
- Example:
$G=\{$ Matching Pennies (MP), Prisoner's Dilemma (PD), Coordination (Crd), Battle of the Sexes (BoS) \}

Example (Continued)

- $G=\{$ Matching Pennies (MP), Prisoner's Dilemma (PD), Coordination (Crd), Battle of the Sexes (BoS)\}
- Suppose the randomly chosen game is MP
- Agent 1's information set is $I_{1,1}$
> 1 knows it's MP or PD
> 1 can infer posterior probabilities for each
$\operatorname{Pr}\left[\mathrm{MP} \mid I_{1,1}\right]=\frac{\operatorname{Pr}[\mathrm{MP}]}{\operatorname{Pr}[\mathrm{MP}]+\operatorname{Pr}[\mathrm{PD}]}=\frac{0.3}{0.3+0.1}=\frac{3}{4}$
$\operatorname{Pr}\left[\operatorname{PD} \mid I_{1,1}\right]=\frac{\operatorname{Pr}[\mathrm{PD}]}{\operatorname{Pr}[\mathrm{MP}]+\operatorname{Pr}[\operatorname{PD}]}=\frac{0.1}{0.3+0.1}=\frac{1}{4}$
- Agent 2 's information set is $I_{2,1}$

$$
\operatorname{Pr}\left[\mathrm{MP} \mid I_{2,1}\right]=\frac{\operatorname{Pr}[\mathrm{MP}]}{\operatorname{Pr}[\mathrm{MP}]+\operatorname{Pr}[\mathrm{CrD}]}=\frac{0.3}{0.3+0.2}=\frac{3}{5}
$$

$$
\operatorname{Pr}\left[\mathrm{Crd} \mid I_{2,1}\right]=\frac{\operatorname{Pr}[\mathrm{Crd}]}{\operatorname{Pr}[\mathrm{MP}]+\operatorname{Pr}[\mathrm{CrD}]}=\frac{0.2}{0.3+0.2}=\frac{2}{5}
$$

7.1.2 Extensive Form with Chance Moves

- Extensive form with Chance Moves
$>$ The book gives a description, but not a formal definition
- Hypothesize a special agent, Nature
- Nature has no utility function
- At the start of the game, Nature makes a probabilistic choice according to the common prior
- The agents receive individual signals about Nature's choice
> Some of Nature's choices are "revealed" to some players, others to other players
> The players receive no other information
- In particular, they cannot see each other's moves

Example

- Same example as before, but translated into extensive form
> Nature randomly chooses MP, sends signal $I_{1,1}$ to Agent 1 , sends signal $I_{2,1}$ to Agent 2

Extensions

- The definition in section 7.1.2 can be extended to include the following:
> Players sometimes get information about each other's moves
> Nature makes choices and sends signals throughout the game
- This allows us to model Backgammon and Bridge

Bridge

- At the start of the game, Nature makes one move
> The deal of the cards
- Nature signals to each player what that player's cards are
- Each player can always see the other players' moves
> But imperfect information, since the players can't see each others' hands

East

Backgammon

- Nature makes choices throughout the game
$>$ The random outcomes of the dice rolls
- Nature reveals its choices to both players

> Both players can

MAX see the dice

- Both players always see each other's moves of checkers
- Hence, perfect information

7.1.3 Definition Based on Epistemic Types

- Epistemic types
> Recall that we can assume the only thing players are uncertain about is the game's utility function
$>$ Thus we can define uncertainty directly over a game's utility function
- Definition 7.1.2: a Bayesian game is a tuple (N, A, Θ, p, u) where:
$>N$ is a set of agents;
$>A=A_{1} \times \ldots \times A_{n}$, where A_{i} is the set of actions available to player i;
> $\Theta=\Theta_{1} \times \ldots \times \Theta_{n}$, where Θ_{i} is the type space of player i;
$>p: \Theta \rightarrow[0,1]$ is a common prior over types; and
> $u=\left(u_{1}, \ldots, u_{n}\right)$, where $u_{i}: A \times \Theta \rightarrow \mathfrak{R}$ is the utility function for player i
- All this is common knowledge among the players
> And each agent knows its own type

Types

- An agent's type consists of all the information it has that isn't common knowledge, e.g.,
> The agent's actual payoff function
> The agent's beliefs about other agents' payoffs,
> The agent's beliefs about their beliefs about his own payoff
> Any other higher-order beliefs

Example

- Agent 1's possible types: $\theta_{1,1}$ and $\theta_{1,2}$
- I's type is $\theta_{1, j} \Leftrightarrow 1$'s info set is $I_{1, j}$
- Agent 2's possible types: $\theta_{2,1}$ and $\theta_{2,2}$
- 2's type is $\theta_{2, j} \Leftrightarrow 2$'s info set is $I_{2, j}$
- Joint distribution on the types:

$$
\begin{array}{ll}
\operatorname{Pr}\left[\theta_{1,1}, \theta_{2,1}\right]=0.3 ; & \operatorname{Pr}\left[\theta_{1,1}, \theta_{2,2}\right]=0.1 \\
\operatorname{Pr}\left[\theta_{1,2}, \theta_{2,1}\right]=0.2 ; & \operatorname{Pr}\left[\theta_{1,2}, \theta_{2,2}\right]=0.4
\end{array}
$$

- Conditional probabilities for agent 1 :
$>\operatorname{Pr}\left[\theta_{2,1} \mid \theta_{1,1}\right]=0.3 /(0.3+0.1)=3 / 4 ; \quad \operatorname{Pr}\left[\theta_{2,2} \mid \theta_{1,1}\right]=0.1 /(0.3+0.1)=1 / 4$
$>\operatorname{Pr}\left[\theta_{2,1} \mid \theta_{1,2}\right]=0.2 /(0.2+0.4)=1 / 3 ; \quad \operatorname{Pr}\left[\theta_{2,2} \mid \theta_{1,2}\right]=0.4 /(0.2+0.4)=2 / 3$

Example (continued)

- The players' payoffs depend on both their types and their actions
> The types determine what game it is
> The actions determine the payoff within that game

a_{1}	a_{2}	θ_{1}	θ_{2}	u_{1}	u_{2}
U	L	$\theta_{1,1}$	$\theta_{2,1}$	2	0
U	L	$\theta_{1,1}$	$\theta_{2,2}$	2	2
U	L	$\theta_{1,2}$	$\theta_{2,1}$	2	2
U	L	$\theta_{1,2}$	$\theta_{2,2}$	2	1
U	R	$\theta_{1,1}$	$\theta_{2,1}$	0	2
U	R	$\theta_{1,1}$	$\theta_{2,2}$	0	3
U	R	$\theta_{1,2}$	$\theta_{2,1}$	0	0
U	R	$\theta_{1,2}$	$\theta_{2,2}$	0	0
D	L	$\theta_{1,1}$	$\theta_{2,1}$	0	2
D	L	$\theta_{1,1}$	$\theta_{2,2}$	3	0
D	L	$\theta_{1,2}$	$\theta_{2,1}$	0	0
D	L	$\theta_{1,2}$	$\theta_{2,2}$	0	0
D	R	$\theta_{1,1}$	$\theta_{2,1}$	2	0
D	R	$\theta_{1,1}$	$\theta_{2,2}$	1	1
D	R	$\theta_{1,2}$	$\theta_{2,1}$	1	1
D	R	$\theta_{1,2}$	$\theta_{2,2}$	1	2

Strategies

- In principle, we could use any of the three definitions of a Bayesian game
> The book uses the $3^{\text {rd }}$ one (epistemic types)
- Strategies are similar to what we had in imperfect-information games
\rightarrow A pure strategy for player i maps each of i 's types to an action
- what i would play if i had that type
$>$ A mixed strategy s_{i} is a probability distribution over pure strategies
- $s_{i}\left(a_{i} \mid \theta_{j}\right)=\operatorname{Pr}\left[i\right.$ plays action $a_{j} \mid i$'s type is $\left.\theta_{j}\right]$
- Three kinds of expected utility: ex post, ex interim, and ex ante
$>$ Depend on what we know about the players' types
- We mainly consider ex ante in this class (which is simpler than others)
- A type profile is a vector $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ of types, one for each agent
$>\theta_{-i}=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_{n}\right)$
> $\boldsymbol{\theta}=\left(\theta_{i}, \theta_{-i}\right)$

Expected Utility

- Three different kinds of expected utility, depending on what we know about the agents' types
- If we know every agent's type (i.e., the type profile $\boldsymbol{\theta}$)
$>$ agent i 's ex post expected utility:

$$
E U_{i}(\mathbf{s}, \boldsymbol{\theta})=\sum_{\mathbf{a}} \operatorname{Pr}[\mathbf{a} \mid \mathbf{s}, \theta] u_{i}(\mathbf{a}, \boldsymbol{\theta})=\sum_{\mathbf{a}}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}(\mathbf{a}, \boldsymbol{\theta})
$$

- If we only know the common prior
> agent i 's ex ante expected utility: $\quad E U_{i}(\mathbf{s})=\sum_{\theta} \operatorname{Pr}[\theta] E U_{i}(\mathbf{s}, \theta)=\sum_{\theta_{i}} \operatorname{Pr}\left[\theta_{i}\right] E U_{i}\left(\mathbf{s}, \theta_{i}\right)$
- If we know the type θ_{i} of one agent i, but not the other agents' types
> i 's ex interim expected utility: $\left.E U_{i}\left(\mathbf{s}, \theta_{i}\right)=\sum_{\theta_{-i}} \operatorname{Pr}\left[\theta_{-i} \mid \theta_{i}\right] E U_{i}\left(\mathbf{s},\left(\theta_{i}, \theta_{-i}\right)\right)\right]$

Bayes-Nash Equilibria

- Given a strategy profile \mathbf{s}_{-i}, a best response for agent i is a strategy s_{i} such that

$$
s_{i} \in \arg \max _{s_{i}^{\prime}}\left(E U_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)\right)
$$

- Above, the set notation is because more than one strategy may produce the same expected utility
- A Bayes-Nash equilibrium is a strategy profile \mathbf{s} such that for every s_{i} in \mathbf{s}, s_{i} is a best response to \mathbf{s}_{-i}
> Just like the definition of a Nash equilibrium, except that we're using Bayesian-game strategies

Computing Bayes-Nash Equilibria

- The idea is to construct a payoff matrix for the entire Bayesian game, and find equilibria on that matrix

- First, write each of the pure strategies as a list of actions, one for each type
- Agent 1's pure strategies:
$>\mathrm{UU}: \mathrm{U}$ if type $\theta_{1,1}, \mathrm{U}$ if type $\theta_{1,2}$
$>$ UD: U if type $\theta_{1,1}, \mathrm{D}$ if type $\theta_{1,2}$
$>$ DU: D if type $\theta_{1,1}$, U if type $\theta_{1,2}$
$>\mathrm{DD}:\left(\begin{array}{l}\text { Dif type } \theta_{1,2}\end{array}\right.$, D if type $\theta_{1,2}$
- Agent 2's pure strategies:

Computing Bayes-Nash Equilibria (continued)

- Next, compute the ex ante expected utility for each pure-strategy profile
$>$ e.g., (note that θ, UU, and LL determine dots)

$$
E U_{2}(U U, L L)=\sum_{\theta} \operatorname{Pr}[\theta] u_{2}(\ldots, \theta)
$$

Computing Bayes-Nash Equilibria (continued)

- Put all of the ex ante expected utilities into a payoff matrix
$>$ e.g., $E U_{2}(U U, L L)=1$
- Now we can compute best responses and Nash equilibria

MP ($p=0.3$)				PD ($p=0.1$)		
				D	$\mathrm{L} \quad \mathrm{R}$	
U		2, 0)	0,2		2.2	0,3
		0,2	2,0		3, 0	1,1
$\operatorname{Crd}(p=0.2)$				$\operatorname{BoS}(p=0.4)$		
U D			R		L	R
		$2,2)$	0,0	U	2,(1)	0,0
		0,0	1,1	D	0, 0	1,2

	LL	$L R$	$R L$	$R R$
$U U$	2, (1)	1, 0.7	1, 1.2	0, 0.9
$U D$	0.8, 0.2	1, 1.1	0.4, 1	0.6, 1.9
$D U$	$1.5,1.4$	$0.5,1.1$	1.7, 0.4	0.7, 0.1
DD	0.3, 0.6	0.5, 1.5	1.1, 0.2	1.3, 1.1

Summary

- Incomplete information vs. imperfect information
- Incomplete information vs. uncertainty about payoffs
- Bayesian games (three different definitions)
> Changing uncertainty about games into uncertainty about payoffs
> Ex ante, ex interim, and ex post utilities
> Bayes-Nash equilibria
- Bayesian-game interpretations of Bridge and Backgammon
- Base-Nash instead of Nash

