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Introduction

 All the kinds of games we’ve looked at so far have assumed that everything 

relevant about the game being played is common knowledge to all the 

players:

 the number of players

 the actions available to each

 the payoff vector associated with each action vector 

 True even for imperfect-information games 

 The actual moves aren’t common knowledge, but the game is 

 We’ll now consider games of incomplete (not imperfect) information

 Players are uncertain about the game being played 



Example
 Consider the payoff matrix shown here

 e is a small positive constant; Agent 1 knows its value

 Agent 1 doesn’t know the values of a, b, c, d

 Thus the matrix represents a set of games

 Agent 1 doesn’t know which of these games

is the one being played

 Agent 1 wants a strategy that makes sense despite this lack of knowledge

 If Agent 1 thinks Agent 2 is malicious, then Agent 1 might want to play a 

maxmin, or “safety level,” strategy

• minimum payoff of T is 1–e

• minimum payoff of B is 1

 So agent 1’s maxmin strategy is B 



Bayesian Games

 Suppose we know the set G of all possible games and we have enough 

information to put a probability distribution over the games in G

 A Bayesian Game is a class of games G that satisfies two fundamental 

conditions

 Condition 1:

 The games in G have the same number of agents, and the same strategy 

space (set of possible strategies) for each agent. The only difference is 

in the payoffs of the strategies.

 This condition isn’t very restrictive

 Other types of uncertainty can be reduced to the above, by 

reformulating the problem



Example

 Suppose we don’t know whether player 2 only has strategies L and R, or also an 

additional strategy C:

Game G1 Game G2

 If player 2 doesn’t have strategy C, this is equivalent to having a strategy C that’s 

strictly dominated by other strategies:

Game G1'

 The Nash equilibria for G1'  are the same as the Nash equilibria for G1

 We’ve reduced the problem to whether C’s payoffs are those of G1' or G2



Bayesian Games

 Condition 2 (common prior):

 The probability distribution over the games in G is common knowledge 

(i.e., known to all the agents) 

 So a Bayesian game defines

 the uncertainties of agents about the game being played, 

 what each agent believes the other agents believe about the game being 

played

 The beliefs of the different agents are posterior probabilities

 Combine the common prior distribution with individual “private 

signals” (what’s “revealed” to the individual players)

 The common-prior assumption rules out whole families of games

 But it greatly simplifies the theory, so most work in game theory uses it

 There are some examples of games that don’t satisfy Condition 2



Definitions of Bayesian Games
 The book discusses three different ways to define Bayesian games 

 All are 

• equivalent (ignoring a few subtleties) 

• useful in some settings

• intuitive in their own way

 The first definition (Section 7.1.1) is based on information sets

 A Bayesian game consists of 

 a set of games that differ only in their payoffs 

 a common (i.e., known to all players) prior distribution over them 

 for each agent, a partition structure (set of information sets) over the games

 Formal definition on the next page



7.1.1  Definition based on Information Sets

 A Bayesian game is a 4-tuple (N,G,P,I) 

where:

 N is a set of agents

 G is a set of N-agent games 

 For every agent i, every game in G

has the same strategy space

 P is a common prior over G

• common: common knowledge 

(known to all the agents)

• prior: probability before 

learning any additional info

 I = (I1, …, IN) is a tuple of 

partitions of G, one for each agent

• Information sets

 Example:

G = {Matching Pennies (MP), 

Prisoner’s Dilemma (PD), 

Coordination (Crd), 

Battle of the Sexes (BoS)}

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

I1,1

I2,1 I2,2

I1,2



Example (Continued)

 G = {Matching Pennies (MP), 

Prisoner’s Dilemma (PD),

Coordination (Crd), 

Battle of the Sexes (BoS)}

 Suppose the randomly chosen

game is MP

 Agent 1’s information set is I1,1

 1 knows it’s MP or PD

 1 can infer posterior probabilities

for each

Pr[MP I1,1]=
Pr[MP]

Pr[MP]+ Pr[PD]
=

0.3

0.3+ 0.1
=

3

4

Pr[MP I2,1]=
Pr[MP]

Pr[MP]+ Pr[CrD]
=

0.3

0.3+ 0.2
=

3

5

 Agent 2’s information set is I2,1

Pr[PD I1,1]=
Pr[PD]

Pr[MP]+ Pr[PD]
=

0.1

0.3+0.1
=

1

4

Pr[Crd I2,1]=
Pr[Crd]

Pr[MP]+ Pr[CrD]
=

0.2

0.3+0.2
=

2

5

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

I1,1

I2,1 I2,2

I1,2



7.1.2  Extensive Form with Chance Moves

 Extensive form with Chance Moves

 The book gives a description, but not a formal definition

 Hypothesize a special agent, Nature

 Nature has no utility function

 At the start of the game, Nature makes a probabilistic choice according to 

the common prior 

 The agents receive individual signals about Nature’s choice

 Some of Nature’s choices are “revealed” to some players, others to other 

players

 The players receive no other information

• In particular, they cannot see each other’s moves



Nature

Example

 Same example as before, but

translated into extensive form

 Nature randomly chooses MP,

sends signal I1,1 to Agent 1,

sends signal I2,1 to Agent 2

Crd

p=0.2

MP (p=0.3)

PD

p=0.1

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

I1,1

I2,1 I2,2

I1,2



Extensions

 The definition in section 7.1.2 can be extended to include the following:

 Players sometimes get information about each other’s moves

 Nature makes choices and sends signals throughout the game

 This allows us to model Backgammon and Bridge



Bridge

 At the start of the game, Nature makes

one move

 The deal of the cards

 Nature signals to each player what

that player’s cards are

 Each player can always see

the other players’ moves

 But imperfect information,

since the players can’t see

each others’ hands

West

North

East

South

6
2

8
Q

Q

J
6

5



9

7

A

K

5

3

A

9





Backgammon

 Nature makes choices throughout the game

 The random outcomes of the dice rolls

 Nature reveals its choices to both players

 Both players can

see the dice

 Both players always see

each other’s moves of checkers

 Hence, perfect

information



7.1.3  Definition Based on Epistemic Types
 Epistemic types

 Recall that we can assume the only thing players are uncertain about is the 

game’s utility function 

 Thus we can define uncertainty directly over a game’s utility function

 Definition 7.1.2: a Bayesian game is a tuple (N, A, , p, u) where:

 N is a set of agents;

 A = A1×… × An , where Ai is the set of actions available to player i ;

  = 1×… × n , where i is the type space of player i ;

 p :  [0, 1] is a common prior over types; and

 u = (u1, . . . , un ), where ui : A×   is the utility function for player i

 All this is common knowledge among the players

 And each agent knows its own type



Types

 An agent’s type consists of all the information it has that isn’t common 

knowledge, e.g.,

 The agent’s actual payoff function 

 The agent’s beliefs about other agents’ payoffs, 

 The agent’s beliefs about their beliefs about his own payoff

 Any other higher-order beliefs



Example

 Agent 1’s possible types: θ1,1 and θ1,2

 1’s type is θ1, j 1’s info set is I1, j

 Agent 2’s possible types: θ2,1 and θ2,2

 2’s type is θ2, j 2’s info set is I2, j

 Joint distribution on the types:

Pr[θ1,1, θ2,1] = 0.3;    Pr[θ1,1, θ2,2] = 0.1

Pr[θ1,2, θ2,1] = 0.2;    Pr[θ1,2, θ2,2] = 0.4

 Conditional probabilities for agent 1:

 Pr[θ2,1 | θ1,1] = 0.3/(0.3 + 0.1) = 3/4;    Pr[θ2,2 | θ1,1] = 0.1/(0.3 + 0.1) = 1/4

 Pr[θ2,1 | θ1,2] = 0.2/(0.2 + 0.4) = 1/3;    Pr[θ2,2 | θ1,2] = 0.4/(0.2 + 0.4) = 2/3

θ1,1

θ2,1 θ2,2

θ1,2

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2



Example (continued)

 The players’ payoffs depend on both 

their types and their actions

 The types determine what game it is

 The actions determine the payoff 

within that game

θ1,1

θ2,1 θ2,2

θ1,2

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2



Strategies
 In principle, we could use any of the three definitions of a Bayesian game

 The book uses the 3rd one (epistemic types)

 Strategies are similar to what we had in imperfect-information games

 A pure strategy for player i maps each of i’s types to an action 

• what i would play if i had that type 

 A mixed strategy si is a probability distribution over pure strategies

• si(ai | j) = Pr[i plays action aj | i’s type is j]

 Three kinds of expected utility: ex post, ex interim, and ex ante

 Depend on what we know about the players’ types

 We mainly consider ex ante in this class (which is simpler than others)

 A type profile is a vector  = (1, 2, …, n) of types, one for each agent

 –i = (1, 2, …, i–1, i+1, …, n)

  = (i, –i)



Expected Utility

 Three different kinds of expected utility, depending on what we know about 

the agents’ types

 If we know every agent’s type (i.e., the type profile )

 agent i’s ex post expected utility:

 If we only know the common prior

 agent i’s ex ante 

expected utility:

 If we know the type i of one agent i, but not the other agents’ types

 i’s ex interim

expected utility:



Bayes-Nash Equilibria

 Given a strategy profile s–i , a best response for agent i is a strategy si such 

that

si  arg max(EUi (s'i , s–i))

s'i

 Above, the set notation is because more than one strategy may produce the 

same expected utility

 A Bayes-Nash equilibrium is a strategy profile s such that for every si in s, 

si is a best response to s–i

 Just like the definition of a Nash equilibrium, except that we’re using 

Bayesian-game strategies



Computing Bayes-Nash Equilibria

 The idea is to construct a payoff 

matrix for the entire Bayesian game, 

and find equilibria on that matrix

 First, write each of the pure strategies 

as a list of actions, one for each type

 Agent 1’s pure strategies:

 UU:  U if type θ1,1 , U if type θ1,2

 UD:  U if type θ1,1 , D if type θ1,2

 DU:  D if type θ1,1 , U if type θ1,2

 DD:  D if type θ1,1 , D if type θ1,2

 Agent 2’s pure strategies:

 LL:  L if type θ2,1 , L if type θ2,2

 LR:  L if type θ2,1 , R if type θ2,2

 RL:  R if type θ2,1 , L if type θ2,2

 RR:  R if type θ2,1 , R if type θ2,2

θ1,1

θ2,1 θ2,2

θ1,2

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2



Computing Bayes-Nash Equilibria (continued)

 Next, compute the ex ante expected utility for each pure-strategy profile

 e.g., (note that 𝜃 , UU, and LL determine dots)

   

1

)1(4.0)2(2.0)2(1.0)0(3.0

),,,(],Pr[

),,,(],Pr[

),,,(],Pr[

),,,(],Pr[

.,.,] Pr[,

2,22,122,22,1

1,22,121,22,1

2,21,122,21,1

1,21,121,21,1

22























LUu

LUu

LUu

LUu

uLLUUEU




MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

θ1,1

θ2,1 θ2,2

θ1,2



Computing Bayes-Nash Equilibria (continued)

 Put all of the ex ante expected utilities into a payoff matrix

 e.g., EU2(UU,LL) = 1

 Now we can compute best 

responses and Nash equilibria

MP  (p = 0.3)

L R

U 2, 0 0, 2

D 0, 2 2, 0

PD  (p = 0.1)

L R

U 2, 2 0, 3

D 3, 0 1, 1

Crd (p=0.2)

L R

U 2, 2 0, 0

D 0, 0 1, 1

BoS (p = 0.4)

L R

U 2, 1 0, 0

D 0, 0 1, 2

θ1,1

θ2,1 θ2,2

θ1,2



Summary

 Incomplete information vs. imperfect information

 Incomplete information vs. uncertainty about payoffs

 Bayesian games (three different definitions)

 Changing uncertainty about games into uncertainty about payoffs

 Ex ante, ex interim, and ex post utilities

 Bayes-Nash equilibria

 Bayesian-game interpretations of Bridge and Backgammon

 Base-Nash instead of Nash


