CMSC 474, Introduction to Game Theory Coalition Game Theory

Mohammad T. Hajiaghayi University of Maryland

Coalitional Games with Transferable Utility

- Given a set of agents, a coalitional game defines how well each group (or coalition) of agents can do for itself—its payoff
 - Not concerned with
 - how the agents make individual choices within a coalition,
 - how they coordinate, or
 - any other such detail
- **Transferable utility** assumption: the payoffs to a coalition may be freely redistributed among its members
 - > Satisfied whenever there is a universal **currency** that is used for exchange in the system
 - Implies that each coalition can be assigned a single value as its payoff

Coalitional Games with Transferable Utility

- A coalitional game with transferable utility is a pair G = (N, v), where
 - \triangleright N = {1, 2, ..., n} is a finite set of players
 - ▶ (**nu**) $v: 2^N \to \Re$ associates with each coalition $S \subseteq N$ a real-valued payoff v(S), that the coalition members can distribute among themselves
- *v* is the **characteristic function**
 - \triangleright We assume $v(\emptyset) = 0$
- A coalition's payoff is also called its worth
- Coalitional game theory is normally used to answer two questions:
 - (1) Which coalition will form?
 - (2) How should that coalition divide its payoff among its members?
- The answer to (1) is often "the grand coalition" (all of the agents)
 - > But this answer can depend on making the right choice about (2)

Example: A Voting Game

- Consider a parliament that contains 100 representatives from four political parties:
 - > A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.)
- They're going to vote on whether to pass a \$100 million spending bill (and how much of it should be controlled by each party)
- Need a majority (≥ 51 votes) to pass legislation
 - > If the bill doesn't pass, then every party gets 0
- More generally, a voting game would include
 - > a set of agents N
 - \triangleright a set of winning coalitions $W \subseteq 2^N$
 - In the example, all coalitions that have enough votes to pass the bill
 - $\triangleright v(S) = 1$ for each coalition $S \in W$
 - Or equivalently, we could use v(S) = \$100 million
 - $\triangleright v(S) = 0$ for each coalition $S \notin W$

Superadditive Games

- A coalitional game G = (N, v) is **superadditive** if the union of two disjoint coalitions is worth at least the sum of its members' worths
 - ▶ for all S, $T \subseteq N$, if $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$
- The voting-game example is superadditive
 - ightharpoonup If $S \cap T = \emptyset$, v(S) = 0, and v(T) = 0, then $v(S \cup T) \ge 0$
 - ightharpoonup If $S \cap T = \emptyset$ and v(S) = 1, then v(T) = 0 and $v(S \cup T) = 1$
 - \triangleright Hence $v(S \cup T) \ge v(S) + v(T)$
- If G is superadditive, the grand coalition always has the highest possible payoff
 - For any $S \neq N$, $v(N) \geq v(S) + v(N-S) \geq v(S)$
- G = (N, v) is **additive** (or **inessential**) if
 - For S, $T \subseteq N$ and $S \cap T = \emptyset$, then $v(S \cup T) = v(S) + v(T)$

Constant-Sum Games

- *G* is **constant-sum** if the worth of the grand coalition equals the sum of the worths of any two coalitions that partition *N*
 - v(S) + v(N S) = v(N), for every $S \subseteq N$
- Every additive game is constant-sum
 - \triangleright additive \Rightarrow $v(S) + v(N S) = v(S \cup (N S)) = v(N)$
- But not every constant-sum game is additive
 - Example is a good exercise

Convex Games

- *G* is **convex** (**supermodular**) if for all $S, T \subseteq N$,
 - $v(S \cup T) + v(S \cap T) \ge v(S) + v(T)$
- It can be shown the above definition is equivalent to for all i in N and for all $S \subseteq T \subseteq N$ - $\{i\}$,
 - $\triangleright v(T \cup \{i\}) v(T) \ge v(S \cup \{i\}) v(S)$
 - > Prove it as an exercise
- Recall the definition of a superadditive game:
 - ▶ for all $S, T \subseteq N$, if $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$
- It follows immediately that every super-additive game is a convex game

Simple Coalitional Games

- A game G = (N, v) is **simple** for every coalition S,
 - either v(S) = 1 (i.e., S wins) or v(S) = 0 (i.e., S loses)
 - Used to model voting situations (e.g., the example earlier)
- Often add a requirement that if S wins, all supersets of S would also win:
 - if v(S) = 1, then for all $T \supseteq S$, v(T) = 1
- This doesn't quite imply superadditivity
 - Consider a voting game G in which 50% of the votes is sufficient to pass a bill
 - \triangleright Two coalitions S and T, each is exactly 50% N
 - $\triangleright v(S) = 1 \text{ and } v(T) = 1$
 - \triangleright But $v(S \cup T) \neq 2$

Proper-Simple Games

- G is a **proper simple game** if it is both simple and constant-sum
 - \triangleright If S is a winning coalition, then N-S is a losing coalition
 - v(S) + v(N S) = 1, so if v(S) = 1 then v(N S) = 0
- Relations among the classes of games:

```
\{\text{Additive games}\} \subseteq \{\text{Super-additive games}\} \subseteq \{\text{Convex games}\} 
\{\text{Additive games}\} \subseteq \{\text{Constant-sum game}\} 
\{\text{Proper-simple games}\} \subseteq \{\text{Constant-sum games}\} 
\{\text{Proper-simple games}\} \subseteq \{\text{Simple game}\}
```

Analyzing Coalitional Games

- Main question in coalitional game theory
 - ➤ How to divide the payoff to the grand coalition?
- Why focus on the grand coalition?
 - Many widely studied games are super-additive
 - Expect the grand coalition to form because it has the highest payoff
 - Agents may be required to join
 - E.g., public projects often legally bound to include all participants
- Given a coalitional game G = (N, v), where $N = \{1, ..., n\}$
 - > We'll want to look at the agents' shares in the grand coalition's payoff
 - The book writes this as (**Psi**) $\psi(N,v) = \mathbf{x} = (x_1, ..., x_n)$, where $\psi_i(N,v) = x_i$ is the agent's payoff
 - \triangleright We won't use the ψ notation much
 - Can be useful for talking about several different coalitional games at once, but we usually won't be doing that

Terminology

Feasible payoff set

= {all payoff profiles that don't distribute more than the worth of the grand coalition}

$$= \{(x_1, ..., x_n) \mid x_1 + x_2 + ... + x_n\} \le v(N)$$

Pre-imputation set

P = {feasible payoff profiles that are **efficient**, i.e., distribute the entire worth of the grand coalition}

$$= \{(x_1, ..., x_n) \mid x_1 + x_2 + ... + x_n\} = v(N)$$

Imputation set

C = {payoffs in P in which each agent gets at least what he/she would get by going alone (i.e., forming a singleton coalition)}

$$= \{(x_1, ..., x_n) \in \mathsf{P} : \forall i \in N, x_i \ge v(\{i\})\}\$$

im•pute: verb [trans.]
represent as being done,
caused, or possessed by
someone; attribute : the
crimes imputed to Richard.

Fairness, Symmetry

- What is a **fair** division of the payoffs?
 - > Three axioms describing fairness
 - Symmetry, dummy player, and additivity axioms

- Definition: agents *i* and *j* are **interchangeable** if they always contribute the same amount to every coalition of the other agents
 - \triangleright i.e., for every S that contains neither i nor j, $v(S \cup \{i\}) = v(S \cup \{j\})$
- **Symmetry axiom**: in a fair division of the payoffs, interchangeable agents should receive the same payments, i.e.,
 - if *i* and *j* are interchangeable and $(x_1, ..., x_n)$ is the payoff profile, then $x_i = x_j$

Dummy Players

- Agent *i* is a **dummy player** if *i*'s contributes to any coalition is exactly the amount *i* can achieve alone
 - \triangleright i.e., for all *S* s.t. *i* ∉ *S*, $v(S \cup \{i\}) = v(S) + v(\{i\})$
- **Dummy player axiom**: in a fair distribution of payoffs, dummy players should receive payment equal to the amount they achieve on their own
 - i.e., if *i* is a dummy player and $(x_1, ..., x_n)$ is the payoff profile, then $x_i = v(\{i\})$

Additivity

- Let $G_1 = (N, v_1)$ and $G_2 = (N, v_2)$ be two coalitional games with the same agents
- Consider the combined game $G = (N, v_1 + v_2)$, where
 - $(v_1 + v_2)(S) = v_1(S) + v_2(S)$
- Additivity axiom: in a fair distribution of payoffs for G, the agents should get the sum of what they would get in the two separate games
 - i.e., for each player *i*, $\psi_i(N, v_1 + v_2) = \psi_i(N, v_1) + \psi_i(N, v_2)$