# Network Bargaining Games and Cooperative Game Theory

#### Hamid Mahini University of Maryland





# Bargaining



# Bargaining

- Common wisdom has it that the whole is more than the sum of the parts.
- Two cooperative agents are often capable of generating a surplus that neither could achieve alone.
  - Trade creates value
  - Music studio, Music band sell an album
  - Publishing house, author print and sell a book
  - Job position
  - Partnership formation

# Example

- Bargaining over a division of a cake
- Take-it-or-leave-it rule
  - I offer you a piece.
  - If you accept, we trade.
  - If you reject, no one eats.
- What is the equilibrium?
  - Power to the proposer.



# Example

- Bargaining over a division of a cake
- Take-it-or-counteroffer rule
  - I offer you a piece.
  - If you accept, we trade.
  - If you reject, you may counteroffer
    (and δ of the cake remains, the rest melt)
- What is the equilibrium?



# Bargaining

#### What would be the outcome?

# What is the right solution?

### Nash Bargaining Solution



### **Nash Bargaining Solution**



# **Bargaining Game**



# **Bargaining Game**



# **Bargaining Game**

- They are *n* agents in the market.
- Each agent may participate in at most one contract.
- For each pair of agents *i* and *j* we are given weight w<sub>i,j</sub>
  - Representing the surplus of a contract between *i* and *j*

Our main task is to predict the outcome of a network bargaining game.

# **Bargaining Solution**

- We call a set of contracts *M* feasible if:
  - Each agent *i* is in at most *c<sub>i</sub>* contracts.
- A solution ({*z*<sub>*i*,*j*</sub>},*M*) of a bargaining game is:
  - A set of feasible contracts *M*.
  - For each (i, j) in  $M: z_{i,j} + z_{j,i} = w_{i,j}$
  - *z<sub>i,j</sub>* is the amount of money *i* earns from the contract with *j*
  - *x<sub>i</sub>* is the aggregate earning of agent *i*.
  - $\{x_i\}$  is the outcome of the game.

# **Bargaining Solution - Example**



# **Bargaining Solution - Example**



# **Bargaining Solution**

- The set of solution is quite large.
- Define a subset of solution as a result of the bargaining process.



# Goal

- Nash bargaining solution.
  - Stable
  - Balanced
- Cooperative game theory solutions.
  - Core
  - Kernel
- Connection between these two views.

#### **Outside Option**



• The outside option of an agent *i* is the best deal she could make with someone outside the contracting set *M*.

#### **Outside Option**



# Stable and Balanced Solutions

- A solution is stable if no agent has better outside option.
- Nash additionally argued that agents tend to split surplus equally.
- A solution is **balanced** if agents split the net surplus equally.
  - Each agent gets its outside option in a contract.
  - Then divide the money on the table equally.

### **Balanced solution**



# **Stable Solution**



## **Stable Solution**



### **Stable Solution**



Stable Solution

# **Balanced Solution**



### **Balanced Solution**



**Balanced Solution** 

#### **Cooperative game theory**

- A cooperative game is defined by a set of agents *N*.
- A value function  $v: 2^N \rightarrow R^+ \cup \{0\}$ 
  - The value of a set of agents represents the surplus they can achieve.
- The goal is to define an outcome of the game  $\{x_i\}$

v(S) = Maximum value of  $\sum_{(i,j)\in M} w_{i,j}$  over all feasible contract M

#### Core

• An outcome {*x<sub>i</sub>*} is in the core if and only if:

- Each set of agents should earn in total at least as much as they can achieve alone:  $\sum_{i \in S} x_i \ge v(S)$
- Total surplus of all agents is exactly divided among the agents:  $\sum_{i \in \mathbb{N}} x_i = v(N)$

#### Prekernel

• The power of *i* over *j* is the maximum amount *i* can earn without cooperation with *j*.

$$s_{ij}(x) = \max\left\{\nu(S) - \sum_{k \in S} x_k : S \subseteq N, S \ni i, S \not\ni j\right\}$$

**Prekernel**: power of *i* over *j* = power of *j* over *i* 

### **Characterizing Stable Solutions**



A stable solution  $\approx$  a pair of optimum solutions of the above linear programs

#### **Characterizing Stable Solutions**

#### Primal

 $\begin{array}{ll} \text{Maximize} & \sum_{ij} w_{ij} x_{ij} \\ \text{Subject to} & \sum_{j} x_{ij} \leq 1, \quad \forall i \\ & x_{ij} \geq 0, \forall i, j \end{array}$ 

Dual

Minimize  $\sum_{i} u_{i}$ Subject to  $u_{i} + u_{j} \ge w_{ij}$ ,  $\forall i, j$  $u_{i} \ge 0$ ,  $\forall i$ 

# • given $(\{z_{ij}\}, M)$ • $x_{ij} = 1$ iff $(i, j) \in M$

•  $u_i = z_{ij}$  iff  $(i, j) \in M$ 

#### **Characterizing Stable Solutions**

#### Primal

 $\begin{array}{ll} \text{Maximize} & \sum_{ij} w_{ij} x_{ij} \\ \text{Subject to} & \sum_{j} x_{ij} \leq 1, \quad \forall i \\ & x_{ij} \geq 0, \forall i, j \end{array}$ 

Dual

Minimize  $\sum_{i} u_{i}$ Subject to  $u_{i} + u_{j} \ge w_{ij}$ ,  $\forall i, j$  $u_{i} \ge 0$ ,  $\forall i$ 

#### LP to Stable

• given  $({x_{ij}}, {u_i})$ 

• 
$$(i,j) \in M$$
 iff  $x_{ij} = 1$ 

• 
$$z_{ij} = u_i$$
 for all  $x_{ij} = 1$ 

#### Core = Stable

#### **Stable** ⊆ **Core**

- We use the characterization of stable solutions
- Consider  $({x_{ij}}, {u_i})$
- Define  $x_i = u_i$
- We should prove:
  - $\sum_{i \in \mathbb{N}} x_i = v(N)$
  - $\sum_{i \in R} x_i \ge v(R)$

#### Core = Stable

#### **Core** ⊆ **Stable**

- Assume  $({x_i})$  is in the core.
- Consider an optimal set of contracts *M*
- Set  $z_{ij} = x_i$  and  $z_{ji} = x_j$  for all  $(i, j) \in M$ 
  - $\sum_i x_i = v(N) =$ maximum matching
- Set  $u_i = x_i$ 
  - $({u_i})$  is a feasible solution for the dual.

#### Core ∩ Kernel = Balanced

- Assume  $(\{x_i\})$  is in the core  $\cap$  kernel.
- Construct  $(\{z_{ij}\}, M)$  based on the previous approach.
- Define  $\hat{s}_{ij} = \alpha_i z_{ij}$
- Prove  $s_{ij} = \hat{s}_{ij}$