Network Bargaining Games and Cooperative Game Theory

Hamid Mahini
University of Maryland

Bargaining

Bargaining

- Common wisdom has it that the whole is more than the sum of the parts.
- Two cooperative agents are often capable of generating a surplus that neither could achieve alone.
- Trade creates value
- Music studio, Music band - sell an album
- Publishing house, author - print and sell a book
- Job position
- Partnership formation

Example

- Bargaining over a division of a cake
- Take-it-or-leave-it rule
- I offer you a piece.
- If you accept, we trade.
- If you reject, no one eats.
- What is the equilibrium?
- Power to the proposer.

Example

- Bargaining over a division of a cake
- Take-it-or-counteroffer rule
- I offer you a piece.
- If you accept, we trade.
- If you reject, you may counteroffer (and δ of the cake remains, the rest melt)
- What is the equilibrium?

Bargaining

What would be the outcome?

What is the right solution?

Nash Bargaining Solution

Nash Bargaining Solution

Bargaining Game

Bargaining Game

Bargaining Game

- They are n agents in the market.
- Each agent may participate in at most one contract.
- For each pair of agents i and j we are given weight $w_{i, j}$
- Representing the surplus of a contract between i and j

Our main task is to predict the outcome of a network bargaining game.

Bargaining Solution

- We call a set of contracts M feasible if:
- Each agent i is in at most c_{i} contracts.
- A solution ($\left.\left\{z_{i, j}\right\}, M\right)$ of a bargaining game is:
- A set of feasible contracts M.
- For each (i, j) in $M: z_{i, j}+z_{j, i}=w_{i, j}$
- $z_{i, j}$ is the amount of money i earns from the contract with j
- x_{i} is the aggregate earning of agent i.
- $\left\{x_{i}\right\}$ is the outcome of the game.

Bargaining Solution - Example

Bargaining Solution - Example

Bargaining Solution

- The set of solution is quite large.
- Define a subset of solution as a result of the bargaining process.

Nash bargaining solution
Cooperative game theory

Goal

- Nash bargaining solution.
- Stable
- Balanced
- Cooperative game theory solutions.
- Core
- Kernel
- Connection between these two views.

Outside Option

- The outside option of an agent i is the best deal she could make with someone outside the contracting set M.

Outside Option

Stable and Balanced Solutions

- A solution is stable if no agent has better outside option.
- Nash additionally argued that agents tend to split surplus equally.
- A solution is balanced if agents split the net surplus equally.
- Each agent gets its outside option in a contract.
- Then divide the money on the table equally.

Balanced solution

Stable Solution

Stable Solution

The Outside option is $1 \$$

Stable Solution

Stable Solution

Balanced Solution

Balanced Solution

Balanced Solution

Cooperative game theory

- A cooperative game is defined by a set of agents N.
- A value function $v: 2^{N} \rightarrow R^{+} \cup\{0\}$
- The value of a set of agents represents the surplus they can achieve.
- The goal is to define an outcome of the game $\left\{x_{i}\right\}$
$v(S)=$ Maximum value of $\sum_{(i, j) \in M} w_{i, j}$ over all feasible contract M

Core

- An outcome $\left\{x_{i}\right\}$ is in the core if and only if:
- Each set of agents should earn in total at least as much as they can achieve alone: $\sum_{i \in S} x_{i} \geq v(S)$
- Total surplus of all agents is exactly divided among the agents: $\sum_{i \in \mathrm{~N}} x_{i}=v(N)$

Prekernel

- The power of i over j is the maximum amount i can earn without cooperation with j.

$$
s_{i j}(x)=\max \left\{\nu(S)-\sum_{k \in S} x_{k}: S \subseteq N, S \ni i, S \not \ngtr j\right\}
$$

Prekernel: power of i over $j=$ power of j over i

Characterizing Stable Solutions

Primal

Maximize $\quad \sum_{i j} w_{i j} x_{i j}$
Subject to $\quad \sum_{j} x_{i j} \leq 1, \forall i$

$$
x_{i j} \geq \mathbf{0}, \forall i, j
$$

Dual

Minimize $\sum_{i} \boldsymbol{u}_{\boldsymbol{i}}$
Subject to $\boldsymbol{u}_{\boldsymbol{i}}+\boldsymbol{u}_{\boldsymbol{j}} \geq \boldsymbol{w}_{i \boldsymbol{j}}, \forall \boldsymbol{i}, \boldsymbol{j}$

$$
u_{i} \geq \mathbf{0}, \forall i
$$

A stable solution \approx a pair of optimum solutions of the above linear programs

Characterizing Stable Solutions

Primal

Maximize $\quad \sum_{i j} w_{i j} x_{i j}$
Subject to $\quad \sum_{j} x_{i j} \leq 1, \forall i$

$$
x_{i j} \geq \mathbf{0}, \forall i, j
$$

Dual

Minimize $\sum_{i} \boldsymbol{u}_{\boldsymbol{i}}$
Subject to $\boldsymbol{u}_{\boldsymbol{i}}+\boldsymbol{u}_{\boldsymbol{j}} \geq \boldsymbol{w}_{\boldsymbol{i j}}, \forall \boldsymbol{i}, \boldsymbol{j}$

$$
u_{i} \geq \mathbf{0}, \forall i
$$

Stable to LP

- given $\left(\left\{z_{i j}\right\}, M\right)$
- $x_{i j}=1$ iff $(i, j) \in M$
- $u_{i}=z_{i j}$ iff $(i, j) \in M$

Characterizing Stable Solutions

Primal

Maximize $\quad \sum_{i j} w_{i j} x_{i j}$
Subject to $\quad \sum_{j} x_{i j} \leq 1, \forall i$

$$
x_{i j} \geq \mathbf{0}, \forall i, j
$$

Dual

Minimize $\sum_{i} \boldsymbol{u}_{\boldsymbol{i}}$
Subject to $u_{i}+u_{j} \geq w_{i j}, \forall i, j$

$$
u_{i} \geq \mathbf{0}, \forall i
$$

LP to Stable

- given $\left(\left\{x_{i j}\right\},\left\{u_{i}\right\}\right)$
- $(i, j) \in M$ iff $x_{i j}=1$
- $z_{i j}=u_{i}$ for all $x_{i j}=1$

Core = Stable

Stable \subseteq Core

- We use the characterization of stable solutions
- Consider ($\left.\left\{x_{i j}\right\},\left\{u_{i}\right\}\right)$
- Define $x_{i}=u_{i}$
- We should prove:
- $\sum_{i \in \mathrm{~N}} x_{i}=v(N)$
- $\sum_{i \in R} x_{i} \geq v(R)$

Core = Stable

Core \subseteq Stable

- Assume ($\left\{x_{i}\right\}$) is in the core.
- Consider an optimal set of contracts M
- Set $z_{i j}=x_{i}$ and $z_{j i}=x_{j}$ for all $(i, j) \in M$
- $\sum_{i} x_{i}=v(N)=$ maximum matching
- Set $u_{i}=x_{i}$
- $\left(\left\{u_{i}\right\}\right)$ is a feasible solution for the dual.

Core \cap Kernel $=$ Balanced

- Assume $\left(\left\{x_{i}\right\}\right)$ is in the core \cap kernel.
- Construct $\left(\left\{z_{i j}\right\}, M\right)$ based on the previous approach.
- Define $\hat{s}_{i j}=\alpha_{i}-z_{i j}$
- Prove $s_{i j}=\hat{s}_{i j}$

