CMSC 474, Introduction to Game Theory

More Auctions

Mohammad T. Hajiaghayi
University of Maryland
First-Price Sealed-Bid Auctions

- Examples:
 - construction contracts (lowest bidder)
 - real estate
 - art treasures

- Typical rules
 - Bidders write their bids for the object and their names on slips of paper and deliver them to the auctioneer
 - The auctioneer opens the bid and finds the highest bidder
 - The highest bidder gets the object being sold, for a price equal to his/her own bid
 - Winner’s profit = BV – price paid
 - Everyone else’s profit = 0
First-Price Sealed-Bid (continued)

- Suppose that
 - There are n bidders
 - Each bidder has a private valuation, v_i, which is private information
 - But a probability distribution for v_i is common knowledge
 - Let’s say v_i is uniformly distributed over [0, 100]
 - Let B_i denote the bid of player i
 - Let π_i denote the profit of player i

- What is the Nash equilibrium bidding strategy for the players?
 - Need to find the optimal bidding strategies

- First we’ll look at the case where $n = 2$
Finding the optimal bidding strategies

- Let B_i be agent i’s bid, and π_i be agent i’s profit
- If $B_i \geq v_i$, then $\pi_i \leq 0$
 - So, assuming rationality, $B_i < v_i$
- Thus
 - $\pi_i = 0$ if $B_i \neq \max_j \{B_j\}$
 - $\pi_i = v_i - B_i$ if $B_i = \max_j \{B_j\}$

- How much below v_i should your bid be?
- The smaller B_i is,
 - the less likely that i will win the object
 - the more profit i will make if i wins the object
First-Price Sealed-Bid (continued)

- **Case** \(n = 2 \)
 - Suppose your BV is \(v \) and your bid is \(B \)
 - Let \(x \) be the other bidder’s BV and \(\alpha x \) be his/her bid, where \(0 < \alpha < 1 \)
 - You don’t know the values of \(x \) and \(\alpha \)
 - Your expected profit is
 - \(E(\pi) = P(\text{your bid is higher}) \cdot (v - B) + P(\text{your bid is lower}) \cdot 0 \)

- If \(x \) is uniformly distributed over \([0, 100]\), then the probability distribution function (pdf) is \(f(x) = 1/100, 0 \leq x \leq 100 \)
 - \(P(\text{your bid is higher}) = P(\alpha x < B) = P(x < B/\alpha) = \int_{0}^{B/\alpha} (1/100) \, dx = B/100\alpha \)
 - so \(E(\pi) = B(v - B)/100\alpha \)

- If you want to maximize your expected profit (hence your valuation of money is risk-neutral), then your maximum bid is
 - \(\max_{B} B(v - B)/100\alpha = \max_{B} B(v - B) = \max_{B} Bv - B^2 \)
 - maximum occurs when \(v - 2B = 0 \) \(\Rightarrow \) \(B = v/2 \)

- So, bid \(1/2 \) of what the item is worth to you!
First-Price Sealed-Bid (continued)

- With n bidders, if your bid is B, then
 - $P(\text{your bid is the highest}) = \left(\frac{B}{100\alpha}\right)^{n-1}$

- Assuming risk neutrality, you choose your bid to be
 - $\max_B B^{n-1}(v-B) = v(n-1)/n$

- As n increases, $B \rightarrow v$
 - I.e., increased competition drives bids close to the valuations
Dutch Auctions

- **Examples**
 - flowers in the Netherlands, fish market in England and Israel, tobacco market in Canada

- **Typical rules**
 - Auctioneer starts with a high price
 - Auctioneer lowers the price gradually, until some buyer shouts “Mine!”
 - The first buyer to shout “Mine!” gets the object at the price the auctioneer just called
 - Winner’s profit $= BV - \text{price}$
 - Everyone else’s profit $= 0$

- **Dutch auctions are game-theoretically equivalent to first-price, sealed-bid auctions**
 - The object goes to the highest bidder at the highest price
 - A bidder must choose a bid without knowing the bids of any other bidders
 - The optimal bidding strategies are the same
Sealed-Bid, Second-Price Auctions

- **Background:** Vickrey (1961)
- **Used for**
 - stamp collectors’ auctions
 - US Treasury’s long-term bonds
 - Airwaves auction in New Zealand
 - eBay and Amazon
- **Typical rules**
 - Bidders write their bids for the object and their names on slips of paper and deliver them to the auctioneer
 - The auctioneer opens the bid and finds the highest bidder
 - The highest bidder gets the object being sold, for a price equal to the *second highest* bid
- **Winner’s profit** = BV – price
- **Everyone else’s profit** = 0
Sealed-Bid, Second-Price (continued)

- Equilibrium bidding strategy:
 - It is a weakly dominant strategy to bid your true value: This property is also called truthfulness or strategyproofness of an auction.
- To show this, need to show that overbidding or underbidding cannot increase your profit and might decrease it.
- Let V be your valuation of the object, and X be the highest bid made by anyone else.
- Let s_V be the strategy of bidding V, and π_V be your profit when using s_V.
- Let s_B be a strategy that bids some $B \neq V$, and π_B be your profit when using s_B.
- There are $3! = 6$ possible numeric orderings of B, V, and X:
 - Case 1, $X > B > V$: You don’t get the commodity either way, so $\pi_B = \pi_V = 0$.
 - Case 2, $B > X > V$: $\pi_B = V - X < 0$, but $\pi_V = 0$.
 - Case 3, $B > V > X$: you pay X rather than your bid, so $\pi_B = \pi_V = V - X > 0$.
 - Case 4, $X < B < V$: you pay X rather than your bid, so $\pi_B = \pi_V = V - X > 0$.
 - Case 5, $B < X < V$: $\pi_B = 0$, but $\pi_V = V - X > 0$.
 - Case 6, $B < V < X$: You don’t get the commodity either way, so $\pi_B = \pi_V = 0$.

Sealed-Bid, Second-Price (continued)

- Sealed-bid, 2nd-price auctions are nearly equivalent to English auctions
 - The object goes to the highest bidder
 - Price is close to the second highest BV
Summary

- Auctions and their equilibria
 - English
 - Dutch
 - Sealed bid, first price
 - Sealed bid, second price (Vickrey)