CMSC 474, Introduction to Game Theory

More Auctions

Mohammad T. Hajiaghayi University of Maryland

First-Price Sealed-Bid Auctions

- Examples:
 - construction contracts (lowest bidder)
 - ➤ real estate
 - > art treasures
- Typical rules
 - Bidders write their bids for the object and their names on slips of paper and deliver them to the auctioneer
 - > The auctioneer opens the bid and finds the highest bidder
 - The highest bidder gets the object being sold, for a price equal to his/her own bid
 - Winner's profit = BV- price paid
 - > Everyone else's profit = 0

- Suppose that
 - > There are *n* bidders
 - > Each bidder has a private valuation, v_i , which is private information
 - > But a probability distribution for v_i is common knowledge
 - Let's say v_i is uniformly distributed over [0, 100]
 - > Let B_i denote the bid of player *i*
 - > Let π_i denote the profit of player *i*
- What is the Nash equilibrium bidding strategy for the players?
 - Need to find the optimal bidding strategies
- First we'll look at the case where n = 2

- Finding the optimal bidding strategies
 - > Let B_i be agent *i*'s bid, and π_i be agent *i*'s profit
 - ► If $B_i \ge v_i$, then $\pi_i \le 0$
 - So, assuming rationality, $B_i < v_i$

> Thus

- $\pi_i = 0$ if $B_i \neq \max_j \{B_j\}$
- $\pi_i = v_i B_i$ if $B_i = \max_j \{B_j\}$
- > How much below v_i should your bid be?
- > The smaller B_i is,
 - the less likely that *i* will win the object
 - the more profit *i* will make if *i* wins the object

- Case n = 2
 - Suppose your BV is *v* and your bid is *B*
 - > Let x be the other bidder's BV and αx be his/her bid, where $0 < \alpha < 1$
 - You don't know the values of x and α
 - Your expected profit is
 - $E(\pi) = P(\text{your bid is higher}) \cdot (v B) + P(\text{your bid is lower}) \cdot 0$
- If x is uniformly distributed over [0, 100], then the probability distribution function (pdf) is f(x) = 1/100, $0 \le x \le 100$
 - > $P(\text{your bid is higher}) = P(\alpha x < B) = P(x < B/\alpha) = \int_0^{B/\alpha} (1/100) \, dx = B/100\alpha$
 - > so $E(\pi) = B(v B)/100\alpha$
- If you want to maximize your expected profit (hence your valuation of money is risk-neutral), then your maximum bid is
 - $\max_B B(v-B)/100\alpha = \max_B B(v-B) = \max_B Bv B^2$
 - maximum occurs when $v 2B = 0 \implies B = v/2$
- So, bid ¹/₂ of what the item is worth to you!

- With *n* bidders, if your bid is *B*, then
 - > $P(\text{your bid is the highest}) = (B/100\alpha)^{n-1}$
- Assuming risk neutrality, you choose your bid to be
 - $\max_B B^{n-1}(v-B) = v(n-1)/n$
- As *n* increases, $B \rightarrow v$
 - > I.e., increased competition drives bids close to the valuations

Dutch Auctions

- Examples
 - Flowers in the Netherlands, fish market in England and Israel, tobacco market in Canada
- Typical rules
 - Auctioneer starts with a high price
 - > Auctioneer lowers the price gradually, until some buyer shouts "Mine!"
 - The first buyer to shout "Mine!" gets the object at the price the auctioneer just called
 - Winner's profit = BV price
 - > Everyone else's profit = 0
- Dutch auctions are game-theoretically equivalent to first-price, sealed-bid auctions
 - > The object goes to the highest bidder at the highest price
 - > A bidder must choose a bid without knowing the bids of any other bidders
 - > The optimal bidding strategies are the same

Sealed-Bid, Second-Price Auctions

- Background: Vickrey (1961)
- Used for
 - stamp collectors' auctions
 - US Treasury's long-term bonds
 - Airwaves auction in New Zealand
 - eBay and Amazon
- Typical rules
 - Bidders write their bids for the object and their names on slips of paper and deliver them to the auctioneer
 - > The auctioneer opens the bid and finds the highest bidder
 - The highest bidder gets the object being sold, for a price equal to the second highest bid
- Winner's profit = BV price
- Everyone else's profit = 0

Sealed-Bid, Second-Price (continued)

- Equilibrium bidding strategy:
 - It is a weakly dominant strategy to bid your true value: This property is also called truthfulness or strategyproofness of an auction.
- To show this, need to show that overbidding or underbidding cannot increase your profit and might decrease it.
- Let *V* be your valuation of the object, and *X* be the highest bid made by anyone else
- Let s_V be the strategy of bidding V, and π_V be your profit when using s_V
- Let s_B be a strategy that bids some $B \neq V$, and π_B be your profit when using s_B
- There are 3! = 6 possible numeric orderings of *B*, *V*, and *X*:
 - > Case 1, X > B > V: You don't get the commodity either way, so $\pi_B = \pi_V = 0$.
 - > Case 2, B > X > V: $\pi_B = V X < 0$, but $\pi_V = 0$
 - ► Case 3, B > V > X: you pay X rather than your bid, so $\pi_B = \pi_V = V X > 0$
 - ► Case 4, X < B < V: you pay X rather than your bid, so $\pi_B = \pi_V = V X > 0$
 - > Case 5, B < X < V: $\pi_B = 0$, but $\pi_V = V X > 0$
 - > Case 6, B < V < X: You don't get the commodity either way, so $\pi_B = \pi_V = 0$

Sealed-Bid, Second-Price (continued)

- Sealed-bid, 2nd-price auctions are nearly equivalent to English auctions
 - > The object goes to the highest bidder
 - Price is close to the second highest BV

Summary

- Auctions and their equilibria
 - > English
 - > Dutch
 - Sealed bid, first price
 - Sealed bid, second price (Vickrey)