CMSC 474, Introduction to Game Theory

Game-tree Search and Pruning Algorithms

Mohammad T. Hajiaghayi
University of Maryland



Finite perfect-information zero-sum games

e Finite:
> finitely many agents, actions, states, histories
e Perfect information:
> Every agent knows
« all of the players’ utility functions
« all of the players’ actions and what they do
* the history and current state
> No simultaneous actions — agents move one-at-a-time
e Constant sum (or zero-sum):
> Constant k such that regardless of how the game ends,
© 2 nUi=K

> For every such game, there’s an equivalent game in which k=0



Examples

® Deterministic:

> chess, checkers

> go, gomoku

> reversi (othello)

> tic-tac-toe, qubic, connect-four

> mancala (awari, kalah)

> 9 men’s morris (merelles, morels, mill)
e Stochastic:

> backgammon, monopoly, yahtzee, parcheesi, roulette, craps
® For now, we’ll consider just the deterministic games



Outline

A Dbrief history of work on this topic
Restatement of the Minimax Theorem
Game trees

The minimax algorithm

a-f pruning

Resource limits, approximate evaluation

Most of this isn’t in the game-theory book
For further information, look at the following
> Russell & Norvig’s Artificial Intelligence: A Modern Approach
 There are 3 editions of this book
« In the 2" edition, it’s Chapter 6



1846 (Babbage)
1928 (von Neumann)

Brief History

designed machine to play tic-tac-toe
minimax theorem

1944 (von Neumann & Morgenstern) backward induction

1950 (Shannon)
1951 (Turing)
19527 (Samuel)
1956 (McCarthy)
1957 (Bernstein)

1967 (Greenblatt)

1992 (Schaeffer)
1994 (Schaeffer)

1997 (Hsu et al)
2007 (Schaeffer et al)

minimax algorithm (finite-horizon search)
program (on paper) for playing chess

checkers program capable of beating its creator
pruning to allow deeper minimax search

first complete chess program, on IBM 704 vacuum-tube computer
could examine about 350 positions/minute

first program to compete in human chess tournaments
3 wins, 3 draws, 12 losses

Chinook won the 1992 US Open checkers tournament

Chinook became world checkers champion;
Tinsley (human champion) withdrew for health reasons

Deep Blue won 6-game match vs world chess champion Kasparov

Checkers solved: with perfect play, it’s a draw
104 calculations over 18 years



Restatement of the Minimax Theorem

® Suppose agents 1 and 2 use strategies s and t on a 2-person game G
> Letu(s,t) = uy(s,t) =—u,(s,t)
> Call the agents Max and Min (they want to maximize and minimize u)

Minimax Theorem: If G is a two-person finite zero-sum game, then there are
strategies s” and t*, and a number v called G’s minimax value, such that

> If Min uses t", Max’s expected utility is <V, i.e., max u(s,t”) = v
> If Max uses s°, Min’s expected utility is > v, i.e., min u(s’,t) = v
Corollary 1:
® u(sitr)=v s* (or t%) is also called “perfect
e (s,t") isa Nash equilibrium play” for Max (or Min)
e s (ort")is Max’s (or Min’s) minimax strategy and maximin strategy

Corollary 2: If G is a perfect-information game, then there are subgame-
perfect pure strategies s~ and t™ that satisfy the theorem.




Game Tree Terminology

Root node: where the game starts

Max (or Min) node: a node where it’s Max’s (or Min’s) move
> Usually draw Max nodes as squares, Min nodes as circles

A node’s children: the possible “next nodes”

Terminal node: a node where the game ends

Max node ]

Min nodes @ @

Max nodes[] H ] u

Min nodes @ D S ® ) O ® O

Terminal
nodes O O O O O O O O 0O O 0 O 0o 00 o



Number of Nodes

e Let b = maximum branching factor

e Let h = height of tree (maximum depth of any terminal node)

e Ifhiseven and the root is a Max node, then
> The number of Max nodesis 1 + b2+ b*+ ... + b"2=0O(b")
> The number of Min nodes isb + b3+ b>+ ... + b1 = O(b")

e Whatif his odd?
Max node ]

Min nodes @ @

Max nodes[] H ] u

Min nodes @ D S ® ) O ® O

Terminal
nodes O O O O O O O O 0O O 0 O 0o 00 o



Number of Pure Strategies

e Pure strategy for Max: at every Max node, choose one branch

e O(b") Max nodes, b choices at each of them => O(},b") pure strategies
> In the following tree, how many pure strategies for Max?

e What about Min?

Max node ]

Min nodes @ @

Max nodes[] L | . o

Min nodes @ O @, ® Y O ® D

Terminal
nodes O O O O O O O O 0O O 0 O 0o 00 o



Finding the Minimax Strategy

e Brute-force way to find minimax strategy for Max

> Construct the sets S and T of all distinct strategies for Max and Min,
then choose _
§* = arg min max u(s,t)
Se teT

e Complexity analysis:

> Need to construct and store O(j,b") distinct strategies
> Each distinct strategy has size O(b")
» Thus space complexity is O(,(b"+h))= Lo(b")
> Time complexity is slightly worse
® But there’s an easier way to find the minimax strategy

e Notation: v(x) = minimax value of the tree rooted at x
o If x is terminal then v(x) = Uy, (X)



Backward Induction

® Depth-first implementation of backward induction (Chapter 4)
> Returns v(X)
> Can easily modify it to return both v(x) and strategy a

function Backward-Induction(x)
If X is terminal then return v(x)
else if it is Max’s move at X then
return max{Backward-Induction(o(x,a)) : a € y(xX)}
else return min{Backward-Induction(o(x,a)) : a € y(X)}

MAX 3




Complexity Analysis

Space complexity
= O(maximum path length)*(space needed to store the path)

= O(bh)
Time complexity = size of the game tree = O(b")

> where b = branching factor, h = height of the game tree
This is a lot better than ,0(b"

But it still 1sn’t good enough for games like chess

> b =35, h~=100 for “reasonable” chess games
> b=~ 35100 = 10135 nodes

Number of particles in the universe = 108’
> 10135 nodes is = 10° times the number of particles in the universe
= no way to examine every node!



Minimax Algorithm (Shannon,1950)

function Minimax(x,d)
If X 1s terminal then return v(x)
else if d = 0 then return e(x)
else if it is Max’s move at X then
return max{Minimax(o(x,a)),d—1) : a € y(X)}
else return min{Minimax(o(x,a)),d—1) : a € x(x)}

Backward induction with an upper bound d on the search depth
> Whenever we reach a nonterminal node of depth d, return e(x)
> e(x) Is a static evaluation function: returns an estimate of v(x)

If d = oo, the algorithm is identical to Backward-Induction

Space complexity = O(min(bh,bd))
Time complexity = O(min(b", bd))



® e(x) is often a weighted sum of features

Evaluation Functions

> e(X) =w,f,(x) + w, f,(x)+ ... +w, f (X)
e E.g., inchess,

> 1e(white pawns —black pawns) + 3«(white knights— black knights) + ...

1

b ¢

a

Vet 1

111

N b
»

b 4 b {
2

LW
B b

2

2 2 2 22

2W 2

Black to move

White slightly better

1 $ 2 =t1
X 1 2 1 1212
b &

b 4
£ =

2

6
288 2 W=
a W I

White to move
Black winning

IS n i



Exact Values for e(x) Don’t Matter

MAX

SeRe

e Behavior is preserved under any monotonic transformation of e

> Only the order matters



Pruning (in 2-player games)

® Let’s go back to 2-player games ...

> Backward-Induction and Minimax both examine nodes that don’t need
to be examined

MAX al23

MIN 3

% Ks)
—t
N
oo @



Pruning

® Db is better for Max than f is
e If Max is rational then Max will never choose f

® So don’t examine any more nodes below f

> They can’t affect v(a)

MAX a 23
MIN 3 r)€2

W O
-t
N
00| @
N



Pruning

e Don’t know whether h is better or worse than b

MAX a|23

MIN 3 1)€2
C d e g X X I
3 12 8 2 14



Pruning

e Still don’t know whether h is better or worse than b

MAX a ?3

MIN 3 DSZ S <5
C d e g X X I J
3 12 8 2 14 5



Pruning

e hisworsethanb
> Don’t need to examine any more nodes below h

e v(@a)=3

MAX

MIN




Alpha Cutoff (Hierarchical Pruning)

Squares are Max nodes, circles are Min nodes P

Let o = max(a,b,c), and suppose d < S \
To reach s, the game must go through p, g, r v=a \ 3
By moving elsewhere at one of those nodes, Max » fI :

can getv> o

If the game ever reaches node s, then Min v=>b . « A
can achieve v < d <what Max can get elsewhere Flvze N

| \
> Max will never let that happen . | Vb
» We don’t need to know anything more about S Ve :' b




Beta Cutoff (Hierarchical Pruning)

Squares are Max nodes, circles are Min nodes @V <y
Let S =min(a,b,c), and suppose d > /5 \\
To reach s, the game must go through p, q, r v=a \-\\
By moving elsewhere at one of those nodes, Min @ v=b \
can achieve v< A N
/s I . \
If the game ever reaches node s, then Max v=b ! N \
can achieve v > d > what Min can get elsewhere @ vse A
» Min will never let that happen \'_""; Vv
» We don’t need to know anything more about s ve L f = min(ab.c)
S lv>d
=



If it is Max’s move at X then

Alpha-Beta Pruning

function Alpha-Beta(x, d, a, f)
If x is terminal then return Uy, (X)
else if d = 0 then return e(x)
else do everything in the 2" column

return v

f

& db d

i

V<« —00

for every child y of x do
v «— max(V, Alpha-Beta (y,d—1, a, )
If v> g then return v
else o «— max(a, V)

else

AN

V «— o0

for every child y of x do
v «— min(v, Alpha-Beta (y,d—1, a, )
If v<athenreturnv
else f «— min(f,v)

m

A




If it is Max’s move at X then

Alpha-Beta Pruning

function Alpha-Beta(x, d, a, f)
If x is terminal then return Uy, (X)
else if d = 0 then return e(x)
else do everything in the 2" column

return v

f

S o 36 &

o 7

(0.9

I

a

7

V<« —00

for every child y of x do
v «— max(V, Alpha-Beta (y,d—1, a, )
If v> g then return v
else o «— max(a, V)

else

Ly

V «— o0

for every child y of x do
v «— min(v, Alpha-Beta (y,d—1, a, )
If v<athenreturnv
else f «— min(f,v)

m

A




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) V < max(Vv, Alpha-Beta (y,d—1, a, f)
If X is terminal then return uy,,, (X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0
for every child y of x do
v «— min(v, Alpha-Beta (y,d—1, a, )
iIf v<athenreturnv
else B« min(5,v)




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) Vv <« max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0
for every child y of x do
v «— min(v, Alpha-Beta (y,d—1, a, )
iIf v<athenreturnv
else B« min(5,v)




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) Vv <« max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0
for every child y of x do
v «— min(v, Alpha-Beta (y,d—1, a, )
iIf v<athenreturnv
else B« min(5,v)




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) Vv <« max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0
for every child y of x do
v «— min(v, Alpha-Beta (y,d—1, a, )
iIf v<athenreturnv
else B« min(5,v)




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) Vv <« max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0
for every child y of x do
v «— min(v, Alpha-Beta (y,d—1, a, )
If v<athen returnv
else f «— min(f,v)




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) Vv <« max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0
for every child y of x do
v «— min(v, Alpha-Beta (y,d—1, a, )
If v<athen returnv
else f «— min(f,v)

/




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) Vv <« max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0

for every child y of x do

v «— min(v, Alpha-Beta (y,d—1, a, )
If v<athen returnv

else f «— min(f,v)




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) V < max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0

for every child y of x do

v «— min(v, Alpha-Beta (y,d—1, a, )
If v<athen returnv

else f «— min(f,v)




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) V < max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0

for every child y of x do

v «— min(v, Alpha-Beta (y,d—1, a, )
If v<athen returnv

else f «— min(f,v)




If it is Max’s move at X then

Alpha-Beta Pruning Ve —

for every child y of x do

function Alpha-Beta(x, d, a, p) V < max(Vv, Alpha-Beta (y,d—1, a, f)
iIf X is terminal then return uy,,,(X) if v> B then return v

else if d = 0 then return e(x) else a < max(a, V)
else do everything in the 2" column else

return v

V «— o0

for every child y of x do

v «— min(v, Alpha-Beta (y,d—1, a, )
If v<athen returnv

else f «— min(f,v)




Properties of Alpha-Beta

e Alpha-beta pruning reasons about which computations are relevant
> A form of metareasoning

Theorem:
e If the value returned by Minimax(x, d) is in [a,f]
« then Alpha-Beta(x, d, a, p) returns the same value
e If the value returned by Minimax(x, d) is < «
* then Alpha-Beta(x, d, a, §) returns a value < a
e If the value returned by Minimax(x, d) is >
« then Alpha-Beta(x, d, a, ) returns a value > 8
Corollary:
 Alpha-Beta(x, d, —oo, ) returns the same value as Minimax(Xx, d)
 Alpha-Beta(x, oo, —o0, o0) returns v(x)



Node Ordering

Deeper lookahead (larger d) usually gives better decisions

> There are “pathological”” games where
it doesn’t, but those are rare

Compared to Minimax,
how much farther ahead
can Alpha-Beta look?

Best case:

> children of Max nodes are searched in greatest-value-first order,
children of Min nodes are searched in least-value-first order

> Alpha-Beta’s time complexity is O(b%2) = doubles the solvable depth
Worst case:

> children of Max nodes are searched in least-value first order,
children of Min nodes are searched in greatest-value first order

> Like Minimax, Alpha-Beta visits all nodes of depth < d: time
complexity O(b9)



Node Ordering

e How to get closer to the best case:
> Every time you expand a state s, apply e to its children
> When it’s Max’s move, sort the children in order of largest e first

> When it’s Min’s move, sort the children in order of smallest e first

e Suppose we have 100 seconds, explore 10* nodes/second
> 10° nodes per move
> Put this into the form b%2 = 3582

> Best case Alpha-Beta reaches depth 8 = pretty good chess program



Other Modifications

e Scveral other modifications that can improve the accuracy or computation
time (but not covered in this class):

> quiescence search and biasing
> transposition tables

> thinking on the opponent’s time
> table lookup of “book moves”
> Iterative deepening



Game-Tree Search in Practice

Checkers: In 1994, Chinook ended 40-year-reign of human world
champion Marion Tinsley

> Tinsley withdrew for health reasons, died a few months later

In 2007, Checkers was solved: with perfect play, it’s a draw
This took 104 calculations over 18 years. Search space size 5 X 102

Chess: In 1997, Deep Blue defeated Gary Kasparov in a six-game match
> Deep Blue searches 200 million positions per second

> Uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply

Othello: human champions don’t compete against computers
> The computers are too good
Go: in 2006, good amateurs could beat the best go programs
« Even with a 9-stone handicap
> Go programs have improved a lot during the past 5 years



Summary

e Two-player zero-sum perfect-information games
> the maximin and minimax strategies are the same

> only need to look at pure strategies

> can do a game-tree search
« minimax values, alpha-beta pruning

e In sufficiently complicated games, perfection is unattainable
> limited search depth, static evaluation function

> Monte Carlo roll-outs

e Game-tree search can be modified for games in which there are stochastic
outcomes



