CMSC 474, Introduction to Game Theory
Combinatorial Games and The Games of NIM

Mohammad T. Hajiaghayi
University of Maryland
Combinatorial Games

- A two-player **combinatorial game** is a perfect-information extensive-form game requiring:
 - Two player: \(P_1 \) and \(P_2 \)
 - Finitely many positions and a fixed starting position
 - A player strategy is a set of moves from his/her current position to another position
 - The player who cannot move loses the game
 - Play always ends
 - Players have complete information (since the game is perfect-information)
 - No chance (probabilistic) moves

- Famous examples:
 - Go, Chess, Checkers, Tic-Tac-Toe, Hex, **NIM games (this class)**, etc.
 - **NIM** is indeed a family of games and we show only a few examples in this session
Nimble

- **Nimble** is a (two-player) combinatorial game

- Put some coins on a strip of squares
- Take turns, moving just one coin to the left.
- No other restrictions:
 - You can jump onto or over other coins, even clear off the strip.
 - You can have any number of coins on a square
- A player who cannot move loses (i.e., when the strip is clear)
- Have any of you seen this game before?
NIM

- NIM is another (two-player) combinatorial game
- Start with n piles (heaps) of stones each has at most m stones
- Players take turns to move. In each turn:
 - A player selects one of the piles, and
 - Takes as many stones from it as he/she likes: perhaps the whole pile, but at least one stone
- A player who cannot move loses
- Since it is a perfect-information extensive-form game, we can draw its game tree
NIM from Computational Point of View

- Let $b =$ maximum branching factor
- Let $h =$ height of tree (maximum depth of any terminal node)
- As we have seen, the number of nodes in the game tree is $O(b^h)$
- Now what are b and h for NIM?
- In the worst case $b=nm$ and $h= nm$. WHY?
- Worst-case time complexity = size of the game tree = $O((nm)^{nm})$
- Just think about $n= 5$ and $m= 100$?
- Can we do better?
Improved Running Time via Memoization

- **Memoization** is a technique for improving the performance of recursive (e.g. backtracking) algorithms
- It involves rewriting the recursive algorithm so that as answers to problems are found, they are *stored in an array*.
- Recursive calls can look up results in the array rather than having to recalculate them
- Memoization improves performance because partial results are never calculated twice
- What would be the size of the array then?
 - We need to keep track of the winner for each possibility of piles of stones
 - Since each pile can have at most m stones (and thus $m+1$ possibilities), and we have n piles, the size is of $O((m+1)^n)$
- It is much better than the previous bound $O((nm)^{nm})$ but still too high.
- Can we do better?
First Deeper Understanding of Two Piles

- Say you have two heaps of size k and h each
- **Theorem:** If $k=h$ then the second player always can win; otherwise the first player can always win.
- **Proof:** By induction on $k+h$:
 - Basis of the induction: $k+h=0$ (second player wins) or even $k+h=1$ (first player wins)
 - Induction Hypothesis: For $k+h<p$, the statement of Thm is correct. What about $k+h=p$?
 - If $k= h$: after any move of the first player (say taking r stones from one pile), two piles of unequal size ($k-r\neq h$) remains; by Induction Hypothesis (since $k-r+h<p$) the first player now (i.e., the original second player) wins
 - If $k \neq h$ (say $k< h$): the first player takes $h-k$ from the pile of size h to make both piles equal; by Induction Hypothesis the second player now (i.e., the original first player) wins.
 - Note that for the case of $k= h$ you can also think of the second player always mirroring moves of the first player (i.e., by taking the same number of stones from the other pile).]
Any Number of Piles

- We need a generalization of *being equal*
- We define **NIM sum** (a.k.a XOR) of numbers $a_1, a_2, ..., a_n$ (pile sizes):
 - Write each number as a binary number
 - Add the piles modulo 2 in each column (i.e., if the number of ones in the column is odd the result is 1; otherwise 0)
 - The final non-negative number is the NIM sum of piles.

An example:

with three piles, one of size 6, one of size 4, and one of size 3.

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Write the number of stones in each pile as a binary number.
- Add the piles, modulo 2 in each column.
- This nonnegative number is the Nim sum of the piles.

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

The General Case

- A very similar theorem to that of the two pile case

Theorem: If the NIM sum is zero then the second player always can win; otherwise the first player can always win.

- Note that for two piles \(k = h \) if and only if NIM sum is equal to zero (thus the above Thm generalizes the previous one)

Proof: By induction on \(a_1 + a_2 + \ldots + a_n \) (sum of pile sizes):

- Basis of the induction: \(a_1 + a_2 + \ldots + a_n = 0 \) (second player wins) or even \(a_1 + a_2 + \ldots + a_n = 1 \) (first player wins)

- Induction Hypothesis: For \(a_1 + a_2 + \ldots + a_n < p \), the statement of Thm is correct. What about \(a_1 + a_2 + \ldots + a_n = p \).
 - If NIM sum is zero: after any move of the first player *the NIM sum becomes non-zero* and thus by Induction Hypothesis (since sum of sizes becomes strictly less) the first player now (i.e., the original second player) wins
 - If NIM sum is non-zero: the first player can always make *the NIM sum zero by taking from one pile* and thus by Induction Hypothesis (since the sum of sizes becomes strictly less) the second player now (i.e., the original first player) wins.
Zero NIM Sum Becomes Non-zero After Each Move

- Say the first player chooses a pile i and makes its number of stones $a'_i < a_i$
- Consider the first bit from the left that a'_i and a_i are different.
- It means in the corresponding bit column, the number of ones was even before and becomes odd now.
- Thus the corresponding bit in the new NIM sum becomes one.
- It means the new NIM sum is non-zero.

$$
\begin{array}{c}
110101000 \\
000011110 \\
000001010 \\
000001110 \\
011110101 \\
\hline \\
000000000 \\
00001xxxx
\end{array}
$$
Non-zero NIM Sum Can Become Zero After A Move

- Consider the first bit from the left in which the NIM sum is 1.
- There should be an a_i which has 1 in the column corresponding to the bit (since the number of ones is odd in the column)
- Staring from that bit to the right, reverse each bit of a_i if the corresponding NIM sum bit is 1 to obtain a_i'
- This makes the new NIM sum zero
- Note that the new number $a_i' < a_i$, since the first different bit from the left (the most significant bit of difference) is 1 in a_i and zero in a_i'
- Thus decreasing the number of stones in pile i from a_i to a_i' (i.e., by taking $a_i - a_i'$ stones) makes the NIM sum zero.
Improved Time Complexity

- To find out who can always win, we only need to compute the NIM sum.
- Takes $O(n \log m)$ to obtain binary representation of ALL pile sizes ($O(\log m)$ for each).
- Takes $O(n \log m)$ to obtain the NIM sum and thus the winner.
- Overall only $O(n \log m)$ instead of $O((m+1)^n)$ or even $O((nm)^{nm})$
- HUGE improvement!!!
Games of Soldiers: Northcott’s Game

- Northcott’s is another (two-player) combinatorial game
- There is just one checker of each color on each row of a checker-board
- Players take turns
- Each player in each turn to move, slides one of his/her checkers any number of squares in its own row without
 - Jumping over the opponent's checker, or
 - Going off the board
- A player who cannot move loses
- It is NIM with a caveat!!!