
CMSC 474, Introduction to Game Theory

Combinatorial Games and The Games of NIM

Mohammad T. Hajiaghayi

University of Maryland

Combinatorial Games

 A two-player combinatorial game is a perfect-information extensive-form

game requiring:

 Two player: P1 and P2

 Finitely many positions and a fixed starting position

 A player strategy is a set of moves from his/her current position to

another position

 The player who cannot move loses the game

 Play always ends

 Players have complete information

(since the game is perfect-information)

 No chance (probabilistic) moves

 Famous examples:

 Go, Chess, Checkers, Tic-Tac-Toe, Hex, NIM games (this class), etc.

 NIM is indeed a family of games and we show only a few examples in

this session

Nimble

 Nimble is a (two-player) combinatorial game

 Put some coins on a strip of squares

 Take turns, moving just one coin to the left.

 No other restrictions:

 You can jump onto or over other coins, even clear off the strip.

 You can have any number of coins on a square

 A player who cannot move loses (i.e., when the strip is clear)

 Have any of you seen this game before?

NIM

NIM is another (two-player) combinatorial game

Start with n piles (heaps) of stones each has at most m

stones

Players take turns to move. In each turn:

A player selects one of the piles, and

Takes as many stones from it as he/she likes: perhaps

the whole pile, but at least one stone

A player who cannot move loses

Since it is a perfect-information extensive-form game,

we can draw its game tree

NIM from Computational Point of View
 Let b = maximum branching factor

 Let h = height of tree (maximum depth of any terminal node)

 As we have seen, the number of nodes in the game tree is O(bh)

 Now what are b and h for NIM?

 In the worst case b=nm and h= nm. WHY?

 Worst-case time complexity = size of the game tree = O((nm)nm)

 Just think about n= 5 and m= 100?

 Can we do better?

Improved Running Time via Memoization

 Memoization is a technique for improving the performance of recursive (e.g.

backtracking) algorithms

 It involves rewriting the recursive algorithm so that as answers to problems

are found, they are stored in an array.

 Recursive calls can look up results in the array rather than having to

recalculate them

 Memoization improves performance because partial results are never

calculated twice

 What would be the size of the array then?

 We need to keep track of the winner for each possibility of piles of stones

 Since each pile can have at most m stones (and thus m+1 possibilities),

and we have n piles, the size is of O((m+1)n)

 It is much better than the previous bound O((nm)nm) but still too high.

 Can we do better?

First Deeper Understanding of Two Piles
 Say you have two heaps of size k and h each

 Theorem: If k=h then the second player always can win; otherwise the first

player can always win.

 Proof: By induction on k+h:

 Basis of the induction: k+h= 0 (second player wins) or even k+h=1 (first player

wins)

 Induction Hypothesis: For k+h< p, the statement of Thm is correct. What about

k+h=p?

 If k= h: after any move of the first player (say taking r stones from one pile),

two piles of unequal size (k-r≠ h) remains; by Induction Hypothesis (since

k-r+h<p) the first player now (i.e., the original second player) wins

 If k ≠ h (say k< h): the first player takes h-k from the pile of size h to make

both piles equal; by Induction Hypothesis the second player now (i.e., the

original first player) wins.

 Note that for the case of k= h you can also think of the second player always

mirroring moves of the first player (i.e., by taking the same number of stones

from the other pile)].

Any Number of Piles

 We need a generalization of being equal

 We define NIM sum (a.k.a XOR) of numbers a1, a2,…,an (pile sizes):

 Write each number as a binary number

 Add the piles modulo 2 in each column (i.e., if the number of ones in

the column is odd the result is 1; otherwise 0)

 The final non-negative number is the NIM sum of piles.

An example:

The General Case
 A very similar theorem to that of the two pile case

 Theorem: If the NIM sum is zero then the second player always can win;

otherwise the first player can always win.

 Note that for two piles k=h if and only if NIM sum is equal to zero

(thus the above Thm generalizes the previous one)

 Proof: By induction on a1+a2+…+an (sum of pile sizes):

 Basis of the induction: a1+a2+…+an= 0 (second player wins) or even

a1+a2+…+an = 1 (first player wins)

 Induction Hypothesis: For a1+a2+…+an < p, the statement of Thm is correct.

What about a1+a2+…+an = p.

 If NIM sum is zero: after any move of the first player the NIM sum becomes

non-zero and thus by Induction Hypothesis (since sum of sizes becomes

strictly less) the first player now (i.e., the original second player) wins

 If NIM sum is non-zero: the first player can always make the NIM sum zero

by taking from one pile and thus by Induction Hypothesis (since the sum of

sizes becomes strictly less) the second player now (i.e., the original first

player) wins.

Zero NIM Sum Becomes Non-zero

After Each Move

 Say the first player chooses a pile i and makes

its number of stones 𝑎𝑖
′ < 𝑎𝑖

 Consider the first bit from the left that 𝑎𝑖
′ and 𝑎𝑖

are different.

 It means in the corresponding bit column, the

number of ones was even before and becomes

odd now.

 Thus the corresponding bit in the new

NIM sum becomes one

 It means the new NIM sum is non-zero.

110101000

101000011

𝑎𝑖
′: 000001010

𝑎𝑖: 000011110

011110101

000000000

00001xxxx

Non-zero NIM Sum Can Become Zero

After A Move

 Consider the first bit from the left in which the NIM sum is 1.

 There should be an 𝑎𝑖 which has 1 in the column corresponding to the bit

(since the number of ones is odd in the column)

 Staring from that bit to the right, reverse each bit of 𝑎𝑖

if the corresponding NIM sum bit is 1 to obtain 𝑎𝑖
′

 This makes the new NIM sum zero

 Note that the new number 𝑎𝑖
′ < 𝑎𝑖, since the first

different bit from the left (the most significant bit

of difference) is 1 in 𝑎𝑖 and zero in 𝑎𝑖
′

 Thus decreasing the number of stones in pile i from 𝑎𝑖 to 𝑎𝑖
′

(i.e., by taking 𝑎𝑖 − 𝑎𝑖
′ stones) makes the NIM sum zero.

110101000

𝑎𝑖
′: 100101111

𝑎𝑖: 101000011

000011110

010011001

001101100

000000000

Improved Time Complexity

 To find out who can always win, we only need to compute

the NIM sum

 Takes O(n log m) to obtain binary representation of ALL pile

sizes (O(log m) for each)

 Takes O(n log m) to obtain the NIM sum and thus the winner.

 Overall only O(n log m) instead of O((m+1)n) or even

O((nm)nm)

 HUGE improvement!!!

Games of Soldiers: Northcott’s Game

 Northcott’s is another (two-player) combinatorial game

 There is just one checker of each color on each row of a checker-board

 Players take turns

 Each player in each turn to move, slides one of his/her checkers any number

of squares in its own row without

 Jumping over the opponent's checker, or

 Going off the board

 A player who cannot move loses

 It is NIM with a caveat!!!

