
CMSC 474, Online Auctions for 

Dynamic Environments

Mohammad T. Hajiaghayi

University of Maryland



Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr

How should you bid?
“Please bid your value and 
your patience. A decision 
will be made by the end of 
your stated patience.”

Example: Last-Minute Tickets 



Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs 1hr

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at 
second-highest bid price. 

If truthful, then:
{ <1, $80>, <2, $60>}



Value      $100  $80  $60
Arrival:   11am  11am 12pm
Patience: 2hrs  2hrs 1hr

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at 
second-highest bid price. 

If truthful, then:
{ <1, $80>, <2, $60>}

However, bidder 1 could 
a) reduce bid price to $65

{<2, $65>, <1, $60>}

$65



Value      $100  $80  $60
Arrival:   11am  11am 12pm
Patience: 2hrs  2hrs 1hr

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at 
second-highest bid price. 

If truthful, then:
{ <1, $80>, <2, $60>}

However, bidder 1 could 
a) reduce bid price to $65

{<2, $65>, <1, $60>}
b) delay bid until 12pm

{<2, $0>, <1, $60>}

12pm

1hr



Dynamic allocation problems

…are everywhere in computer science
• MoteLab (Harvard)

– distributed sensor network testbed
– researchers compete for the right to sense, aggregate and 

propagate readings

• PlanetLab (Princeton)
– global overlay network on the Internet
– supports network research, long-running services

• Grid computing 
– much of science research is now intensively computational
– globally-distributed computational infrastructure

• Network resource allocation
– e.g. dynamic negotiation for WiFi wireless port at Starbucks

Many systems are simultaneously both computational and 
economic systems. 



…are can be found in e-commerce, elsewhere 

• Sequential auctions on eBay
– e.g. auctions for LCDs, each bidder wants one

• Expiring goods
– e.g. auctions for last-minute air-line tickets

• Online advertisement 
– e.g. adword auction of google



Aside: The Online Selection Problem

• Remove incentives, and specialize to the case of 
disjoint arrival-departure intervals.

7 1,000 325



• Remove incentives, assume we have one item to

sell, and specialize to the case of disjoint 

arrival-departure intervals.

• Reduces to the secretary problem:
– interview n job applicants in random order, want to max prob

of selecting best applicant (told n)

– told relative ordering w.r.t. applicants already interviewed, 
must hire or pass

Aside: The Online Selection Problem
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The Secretary Algorithm

• Theorem (Dynkin, 1962):  The following stopping rule 
picks the maximum element with probability 
approaching 1/e as n→∞.
– Observe the first 𝑛/𝑒 elements.  Set a threshold equal to 

the maximum quality seen so far.

– Stop the next time this threshold is reached or exceeded.

• Asymptotic success probability of 1/e is best possible, 
even if the numerical values of elements are revealed. 
– i.e. optimal competitive ratio in the large n limit 



Why 𝑛/𝑒 elements first?
• Suppose we see k items first 

• Then the prob. that the best applicant is selected is 

𝑃 𝑘 =  𝑗=𝑘+1
𝑛 1

𝑛
(
𝑘

𝑗−1
)= 

𝑘

𝑛
 𝑗=𝑘+1
𝑛 1

𝑗−1
where 

–
1

𝑛
is the prob. that jth element is the max one

–
𝑘

𝑗−1
is the prob. that the second max among places 1 to j

appears in the first k slots

• By letting n tends to ∞ and writing fraction x as the 

limit of 
𝑘

𝑛
, using t for 

𝑗−1

𝑛
and dt=

1

𝑛
, the above sum can 

be approximated by the following integral

• 𝑃 𝑥 = 𝑥  𝑥
1 1

𝑡
𝑑𝑡 = −𝑥 ln 𝑥

• To find an x maximizing 𝑃 𝑥 , we set derivative 

∆𝑃 𝑥 = − ln 𝑥 + 1 = 0 and thus we obtain the best 
fraction 𝑥 = 1/𝑒



Basic Set-up for Online Auctions

• Type i = (ai, di, wi). Discrete time periods.
• Arrival time: ai. Departure time: di .Value, wi

• k≥1 goods to sell

• Truthful auction: misreporting value <ai, di, wi> does not 
help the players

• For now assume (later we can generalize them):
– k=1 and thus we have only one item to sell
– agents cannot under-report ai.

– values are coming in a random order. 

• An auction (algorithm) is c-competitive if we get 1/c 
fraction of the optimum benchmark (in expectation)



Straw model for an Auction
• Auction: set the price p=∞ initially, then set p=maxi≤jwi

after j= 𝑛/𝑒 bids received. Sell to first subsequent 
bid with wi ≥ p, then set p=∞.

• Not truthful: Bidders that span transition, and with 
high enough values, should delay arrival.

Truthful Auction:
–At threshold time t of 𝑛/𝑒 arrival, let p≥q be the top two bids 
yet received.
–If any agent bidding p has not yet departed, sell to that 

agent (breaking ties randomly) at price q.
–Else, sell to the next agent whose bid is at least p (breaking 

ties randomly)



Adaptive Limited-Supply Auction
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• At threshold time t, denoting arrival j= 𝑛/𝑒 , let p≥q be 
the top two bids yet received.

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.



Adaptive Limited-Supply Auction

• At threshold time t, denoting arrival j= 𝑛/𝑒 , let p≥q be 
the top two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.
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• At threshold time t, denoting arrival j= 𝑛/𝑒 , let p≥q be 
the top two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.



Adaptive Limited-Supply Auction
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• At threshold time t, denoting arrival j= 𝑛/𝑒 , let p≥q be 
the top two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.
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Analysis:  Truthfulness

• If agent i wins, the price charged to her does not 
depend on her reported valuation.

• Possibility agent i wins is (weakly) increasing in wi, 
hence no incentive to understate wi.

• Reporting w’i > wi cannot increase the possibility that 
agent i wins at a price ≤ wi, hence no incentive to 
overstate wi.

• Price facing agent i is never influenced by di, so no 
incentive to misstate di

… just need to check effect of arrival time.



Analysis:  Truthfulness

• Claim:  Given two arrival times ai<a’i, it’s always better 
to report ai if possible.

• Let r,s be the ( 𝑛/𝑒 -1)-th and 𝑛/𝑒 -th arrival times 
excluding agent I (say 𝑛/𝑒 =3 in this  case).
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Analysis:  Truthfulness

• Stating true arrival, agent 2 defines transition. 
Offered price $5 on transition.
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Analysis:  Truthfulness

• Stating arrival time in (ai,r] changes nothing. Offered 
price $5 on transition.

0 T

$5

$2

$4

$5

$8

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent i

sr

$10



Analysis:  Truthfulness

• Stating arrival time in (ai,r] changes nothing. 

• Stating arrival time in (r,s) influences the transition 
time t but not the pricing.  Still offered price $5.
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Analysis:  Truthfulness

• Stating arrival time in (ai,r] changes nothing. 

• Stating arrival time in (r,s) influences the transition 
time t but not the pricing.

• Stating arrival time ≥ s influences the transition, but 
price not improved.
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Analysis:  Competitive Ratio

• Claim:  Competitive ratio for efficiency is e+o(1), 
assuming all valuations are distinct.

• Case 1:  Item sells at time t.  Winner is highest bidder 
among first 𝑛/𝑒 .  With probability ~1/e, this is also 
the highest bidder among all n agents.

• Case 2:  Otherwise, the auction picks the same 
outcome as the secretary algorithm, whose success 
probability is ~1/e.



Analysis:  Competitive Ratio

• Claim:  Competitive ratio for revenue (wrt Vickrey) is 
e2+o(1), assuming all valuations are distinct.

• Estimate probability of selling to highest bidder at 
second-highest price.  Use same two cases as before.

• Case 1:  Probability ~(1/e)(1/e). 
– (prob 1/e that second highest also in first half)

• Case 2:  Probability ~(1/e)(1/e).
– (prob. that highest in first-half is the second-highest overall is 1/e conditioned on 

highest in second-half, prob. that choose highest in case 2 is 1/e)

• 4+o(1)-competitive for revenue (and also efficiency), by 
setting transition time at n/2.
• Lower-bounds of 2-competitive for efficiency, 1.5-
competitive for revenue (in our model).

e-competitive



General approach for k≥1 items--
Two phase

• “Learning phase”
– use a sequence of bids to set price for rest of 

auction

Transition:
– be sure that remains truthful for agents on 

transition

• “Accepting phase”
– exploit information, retain truthfulness

• Refer to [Hajiaghayi, Kleinberg, Parkes, EC’04] for 
more details and generalizations


