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Search engines like Google and Yahoo! conduct online ad auctions and this
generates a huge amount of revenue for them. While searching, users enter key-
words, and for certain keywords, certain commercial advertisers are interested in
showing up in the search results. It is possible that the user might be interested
in commercial search results for that keyword they have entered. If the user
actually goes and clicks on this ad, and buys the product, the advertiser gains
money. Even just by showing up in the search results, the advertiser stands to
gain, as it is good advertisement to the user.

Search engines conduct online auctions for these keywords among the interested
advertisers, and they want to maximize their reverue. When a keyword comes
in, the ad slots to be shown up in the search results are instantly sold to inter-
ested advertisers, by conducting an auction. Since the keywords are not known
in advance, and as and when a keyword comes in, the bids by different adver-
tisers get revealed, the nature of the auction is online. We assume a completely
adversarial setting, by which we mean, we make no assumption on the input
pattern of keywords. Also, ad slots need to be sold instantly as and when a key-
‘word arrives, and the decision is irrevocable. We also assume in this talk, that
there is only one ad slot that needs to be auctioned, and also, the advertisers
bid their true value. That is, ensuring truthfulness is not our objective in this
talle. However, the advertisers have a fixed budget, and we cannot exceed the
budget in our allocations.

In this talk we outline the procedure given by Buchbinder, Jain and Naor [1].
They give a primal dual mechanism achieving a competitive ratio of 1~ % asymp-
totically, matching the ratio given earlier by Mehta et al. [3]. However, the
analysis presented by Buchbinder et al. is easier to understand, and does not
use a tailor-made potential function for analysis, as used by Mehta et al. One
crucial assumption in both these works is that the individual bid is small com-
pared to the budget of any advertiser, in other words, the budgets are very large.

The underlying setting can be thought of as a bipartite graph. One side of the
bipartition consists. of the nodes corresponding to the advertisers. These set of
vertices are known to the system from the start. Let this set of advertisers be I,
and |I| = n.. The other side of the bipartition consists of nodes corresponding



to the keywords, and these nodes along with the edges incident on them get
revealed in an online manner, when they arrive. Let the set of keywords be J,
and |J| = m. Each advertiser has a daily budget B;, known to the system. We
want to assign each online arriving keyword nade to one interested advertiser,
who has an edge to this keyword node, and we want to maximize the weight
of the matching. Once we decide on including an edge in the matching, we
cannot change our decision. However, we should not exceed the budget of the
advertiser. The total money that the advertiser will pay us is his budget, even
if he bids in excess of his budget. If all the bids were restricted to be 0 or
1 and the budgets very large — oo, then this becomes the online b-matching
problem, for which Kalyanasundaram and Pruhs [2] had proved that the best
competitive ratio one can get is 1 — %, and they gave an algorithm BALANCE
that achieves this competitive ratio. Mehta et al. [3] proved that 1 1 is tight
even for the online auctions case, and present an algorithm that asymptotically
achieves this ratio, when budgets are very large. Buchbinder et al. also give an
algorithm with the same competitive ratic achieved asymptoticaily, but with a
cleaner primal-dual analysis.

The offline primal problem is the following:
maxZZb,;jyij 5.t Zyij <1Vvje J, Zb”y” <B;Viel, Yij = Oviel,jed
i g i ]
(1)

This was proved to be NP-hard. The dual for the above problem is

minZBz-a:é +ZZJ s.t.: bz_?.’llt + z; > b-ij, Ti, %5 >0viel VieJ (2)
i i

We want to use weak duality to bound the competitive ratio. Since the pri-
mal] problem is maximization, by weak duality, any feasible primal solution P
and any feasible dual solution D is related as P < D. This is true even for
the primal optimum solution, OPT. Therefore D > OPT. We want start
from 0 value both the primal and dual solutions, and at every round of online
auction{keyword arrival), we increment cur primal solution by AP and dual
solution by AL, At the end our primal is > AP and the dual is > AD. We
would try to bound the ratio of AP/AD at every round. Since the ratio of 11
is tight for this problem, if we can bound AP/AD > 1— % at every round, then
ab the end our primal solution is P2 (1 1D 2 (1 1)OPT, and we get, an
algorithm with a competitive ratio 1 — 1.

One miglt wounder wly we can’l use preedy in Uhis problem aud just allocale the
key word (o the highest bidder, bul due to the budgel consbrainl we ean construct
an example where greedy can only do as well as [ /2. Say, there are two types
of keyword, wl and w2, and two bidders each with a budget of N. Bidder 1 has
bids 1 for both wl and w2, whereas bidder 2 has bid 1 only for w1 and 0 for



w2. If now wl comes N times, followed hy w2 N times, we allocate greedily
w1 to bidder 1 for all the N arrivals, and exhaust his budget. When w2 comes
N times, we have no one to allocate. So we get a revenue of N, whereas OPT
could have got 2N. Hence the intuition is to balance the allocation somehow.
We should not allocate to the same hidder again and again. Mehta et al. [3]
had a similar idea, and used a potential function to decrease the effective bid
of an advertiser, depending on the how much his budget is already exhausted.
Here, we outline the approach of Buchbinder et al. [1]. In this approach we
assume only one keyword arrives at a time.
The algorithm is as follows:

1. Initially Vi, z; < 0. (Implicitly all z; and all y;; at 0 to maintain the initial
P=0and D=20.

2. Upon arrival of a new keyword j, allocate to the advertiser i € argmaz; 153 (1

z;

)

3.z If z; > 1, do nothing. Otherwise

4. Charge 4 the minimum of 4;; and his budget, and set y;; + 1.

5. zj + bj;(1 — z;) (explicitly modifying z; only the one time it arrives. Each
arrival is considered new. )

6. z; « x(1+ ) + wiE I}B , where ¢ = (1 + Bugs) Rn:am, where Rioe =

bij
maXierjes B,

Theorem: The algorithm is (1 — 2)(1 — Ripar) competitive for the online bud-
geted allocation problem. The competitive ratio — co as Ree — 0, in other
words, as the budgets B; — co¥? € I and the bids are small compared to bud-

gets.
We will prove the theorem by proving the following three claims.

Claim 1:The algorithm produces a. dual feasible solution.

x; > 0 by assignment, since we only increment iy, if we change it. Also, z; > 0
by assignment. We update the value of z; to b;;(1—2;), only if z; < 1, and hence
(1—a;) > 0. If &; > 1, then the dual constraint b;;z; + z; > b;; is automatically
satisfied. For the advertlsers for which z; < 1, we update z; to max;; by (1-x).

zj = by (1 —x;) > bgj(l - a:;)Vi eI (3)
zi + b;jxg = b;jvﬁ el (4)

Claim 2: AP > AD(1 — %) in every iteration when there is a non-zero
increment in AD and AP When there is a non-zero increment in the dual, we
have:

113’3% bii v _p 1 ,
AD = BA.Ll—I—ZJ——-B( (C_I)Bi)—bu(l-i—c_l). (%)

The increment in primal is b;;, (because we set y;; = 1 even if the remammg
budget is less than the current bid. Hence AP/AD =1—2



Claim 3: The algorithm produces an almost feasible primal solution.

wi; = 0 always. However, the infeasibility may arise due to violation of budget,
when the remaining budget is less than the bid, and we still set y;; = 1. In such
cases, » ; bijyi; = By Ideally we want z; to become | when the budget is just
exhausted, but because of arbitrary values of bids, it is difficult to ensure that.
Instead, we prove a weaker claim: When zj bijyi; = By, then z; > 1. This

will ensure, that the budget may be violated in at most one iteration for every
bidder. We show this by proving inductively:

Zj Bijig
¢ B —1

.’1’,‘1'276“1 - (6)

Hence, when the budget gets exhausted, z; > 1. Initially it is true trivially. Let

us assume it holds for bidder ¢ at some interation &, when bidder ¢ is chosen.

b; b;

xzi{end) = x;(start)(1 + "Bf) + ﬁ:@:; (7)
Z:‘a—{k}—bijm 1 b b
c Bi - ik ik
Jlend) > 1+ 22y 4+ —2 8
xi(end) > P ( +Bi)+(c——l)Bi (8)
Luieamgn 0% him(l ey 1
¢ i +AE) —

i{end) > = 9
z;(end) > Py 9

ZJEJ—{H&””” Bk g
{end) > S €% (10)

z{end) > -3
¢ B =1

; = 11
zi(end) > o (11)

where the first inequality follows from induction hypothesis, and the second one
from the fact: forQ) <z <y < 1, M > lﬂ%frl) (easy to prove). In this

inequality, if we replace x with L}g‘: and y by R0, then we get,

ln(l + EIB%) ~ 111(1 + Rmam)

R

(12)

But In(1 + Riuqz) = ln(cftme=) = R0z Infc). Tt is easy to get the rest.

However, we still might have violated the budget in at most one iteration for
every ¢ € I. The maximum violation is: > ; bijwi; < Bij+maxjesb;j. Therefore,
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we can lower bound the real (feasible) primal profit obtained by the algorithm
as Z szJ,Jmm Z b yi5 T 1+Rmu > Z bijyi; (1 — Rinas ). The first
mequahty is by the definition of R,,.. and the second inequality is by binomial
expansion.

Putting the three claims together, we have that our algorithm gives a feasible
primal value Py > P(1—Ruas) = D(1- 1){1- Rpay) > (1 1)(1— Runes)OPT,
at the end, thereby proving the theorem.
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