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Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr

How should you bid?
“Please bid your value and 
your patience. A decision 
will be made by the end of 
your stated patience.”

Example: Last-Minute Tickets 



Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at 
second-highest bid price. 

If truthful, then:
{ <1, $80>, <2, $60>}



Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at 
second-highest bid price. 

If truthful, then:
{ <1, $80>, <2, $60>}

However, bidder 1 could 
a) reduce bid price to $65

{<2, $65>, <1, $60>}

$65



Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at 
second-highest bid price. 

If truthful, then:
{ <1, $80>, <2, $60>}

However, bidder 1 could 
a) reduce bid price to $65

{<2, $65>, <1, $60>}
b) delay bid until 12pm

{<2, $0>, <1, $60>}

12pm

1hr



Dynamic allocation problems

…are everywhere in computer science
• MoteLab (Harvard)

– distributed sensor network testbed
– researchers compete for the right to sense, aggregate and 

propagate readings

• PlanetLab (Princeton)
– global overlay network on the Internet
– supports network research, long-running services

• Grid computing 
– much of science research is now intensively computational
– globally-distributed computational infrastructure

• Network resource allocation
– e.g. dynamic negotiation for WiFi wireless port at Starbucks

Many systems are simultaneously both computational and 
economic systems. 



…are can be found in e-commerce, elsewhere 

• Sequential auctions on eBay
– e.g. auctions for LCDs, each bidder wants one

• Expiring goods
– e.g. auctions for last-minute air-line tickets

• Online advertisement 
– e.g. adword auction of google



Basic Set-up for Online Auctions

• Type i = (ai, di, wi). Discrete time periods.
• Arrival time: ai. Departure time: di .Value, wi

• k¸1 goods to sell

• Quasi-linear utility: 
ui = wi – price,  if we assign agent i some time in [ai,di]

= 0 ,  otherwise

• Auction: A=< f, p >, 
– allocation rule, f : n

 Schedules
– payment rule,   p : n

 Rn

• Truthful auction: reporting value <ai, di, wi> immediately 
upon arrival is a dominant strategy equilibrium (i.e.  no 
benefit otherwise).



Setting
• Assume: agents cannot under-report ai.

• Assume: values i.i.d. from some unknown distribution. 

• Want good performance whatever the distribution is.

• Limited-supply (k¸1) of goods, sell in any period before time 
horizon, T. 
– single-unit 

– multi-unit 

• Efficiency benchmark is the highest value in this case (in 
general EFF(v) = i·k v(i)  for k¸1)

• Revenue benchmark is Vickrey price, the second highest 

value in this case (in general F (2)(v) = max2·l·k { l¢v(l) } for

k>1, “omniscient revenue”, c.f. Goldberg, Hartline et al.01)
• c-competitive if we get 1/c fraction of benchmark (in expectation)



Aside: The Online Selection Problem

• Remove incentives, and specialize to the case of 
disjoint arrival-departure intervals.

7 1,000 325



• Remove incentives, and specialize to the case of 
disjoint arrival-departure intervals.

• Reduces to the secretary problem:
– interview n job applicants in random order, want to max prob 

of selecting best applicant (told n)

– told relative ordering w.r.t. applicants already interviewed, 
must hire or pass

Aside: The Online Selection Problem
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The Secretary Algorithm

• Theorem (Dynkin, 1962):  The following stopping rule 
picks the maximum element with probability 
approaching 1/e as n→∞.
– Observe the first bn/ec elements.  Set a threshold equal to 

the maximum quality seen so far.

– Stop the next time this threshold is reached or exceeded.

• Asymptotic success probability of 1/e is best possible, 
even if the numerical values of elements are revealed. 
– i.e. optimal competitive ratio in the large n limit 



Straw model for an Auction
• Auction: p(t)=1, then set p(t¸t)=maxi·jwi after j=bn/ec

bids received. Sell to first subsequent bid with          
wi ¸ p(t), then set p(t)=1.

• Not truthful: Bidders that span transition, and with 
high enough values, should delay arrival.

Truthful Auction:
–At time t (for bn/ec arrival) let p≥q be the top two bids yet 
received.
–If any agent bidding p has not yet departed, sell to that 

agent (breaking ties randomly) at price q.
–Else, sell to the next agent whose bid is at least p (breaking 

ties randomly)



Adaptive Limited-Supply Auction
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• At time t, denoting arrival j=bn/ec, let p≥q be the top 
two bids yet received.

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.



Adaptive Limited-Supply Auction

• At time t, denoting arrival j=bn/ec, let p≥q be the top 
two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.
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Adaptive Limited-Supply Auction
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• At time t, denoting arrival j=bn/ec, let p≥q be the top 
two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.

t



Analysis:  Truthfulness

• If agent i wins, the price charged to her does not 
depend on her reported valuation.

• Possibility agent i wins is (weakly) increasing in wi, 
hence no incentive to understate wi.

• Reporting w’i > wi cannot increase the possibility that 
agent i wins at a price ≤ wi, hence no incentive to 
overstate wi.

• Price facing agent i is never influenced by di, so no 
incentive to misstate di

… just need to check effect of arrival time.



Analysis:  Truthfulness

• Claim:  Given two arrival times ai<a’i, it’s always better 
to report ai if possible.

• Let r,s be the (bn/ec-1)-th and bn/ec-th arrival times 
excluding agent I (say bn/ec=3 in this  case).
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Analysis:  Truthfulness

• Stating true arrival, agent 2 defines transition. 
Offered price $5 on transition.
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Analysis:  Truthfulness

• Stating arrival time in (ai,r] changes nothing. Offered 
price $5 on transition.
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Analysis:  Truthfulness

• Stating arrival time in (ai,r] changes nothing. 

• Stating arrival time in (r,s) influences the transition 
time t but not the pricing.  Still offered price $5.
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Analysis:  Truthfulness

• Stating arrival time in (ai,r] changes nothing. 

• Stating arrival time in (r,s) influences the transition 
time t but not the pricing.

• Stating arrival time ≥ s influences the transition, but 
price not improved.
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Analysis:  Competitive Ratio

• Claim:  Competitive ratio for efficiency is e+o(1), 
assuming all valuations are distinct.

• Case 1:  Item sells at time t.  Winner is highest bidder 
among first bn/ec.  With probability ~1/e, this is also 
the highest bidder among all n agents.

• Case 2:  Otherwise, the auction picks the same 
outcome as the secretary algorithm, whose success 
probability is ~1/e.



Analysis:  Competitive Ratio

• Claim:  Competitive ratio for revenue (wrt Vickrey) is 
e2+o(1), assuming all valuations are distinct.

• Estimate probability of selling to highest bidder at 
second-highest price.  Use same two cases as before.

• Case 1:  Probability ~(1/e)(1/e). 
– (prob 1/e that second highest also in first half)

• Case 2:  Probability ~(1/e)(1/e).
– (prob. that highest in first-half is the second-highest overall is 1/e conditioned on 

highest in second-half, prob. that choose highest in case 2 is 1/e)

• 4+o(1)-competitive for revenue (and also efficiency), by 
setting transition time at n/2.
• Lower-bounds of 2-competitive for efficiency, 1.5-
competitive for revenue (in our model).

e-competitive



General approach -- Two phase

• “Learning phase”
– use a sequence of bids to set price for rest of 

auction

Transition:
– be sure that remains truthful for agents on 

transition

• “Accepting phase”
– exploit information, retain truthfulness



Multi-Item Online Auction  (k>1)

• (Learning) Choose pivotal bidder, j»Binom(n,½).

• (Transition) Sell up to s=dk/3e items at time t, to agents 
present and bidding above (s+1)-st bid price so far. 

• (Accepting) After t, set p= s-th bid and sell item to 
bid¸p while supply.



Multi-Item Online Auction  (k>1)

• (Learning) Choose pivotal bidder, j»Binom(n,½).
• (Transition) Sell up to s=dk/3e items at time t, to agents 

present and bidding above (s+1)-st bid price so far. 
• (Accepting) After t, set p= s-th bid price  and sell item 

to bid¸p while supply.
• Truthfulness: similar, but more involved.
• Constant-competitive for efficiency.
• Constant-competitive with F (2) for revenue, by setting 

s=dk/2e, and adopting p to be the revenue-optimizing 
fixed price bid in first half, in accepting phase.

• Proofs are more involved.
• Tossing a fair coin gives a constant-competitive 

truthful algorithm for both efficiency and revenue.



Characterization of Truthful auctions

• Definition. Allocation rule f: n ! {0,1}n is monotonic if 
for every agent i and every (,’)2n with [a’i,d’i]µ[ai,di],
and wi> w’i, we have fi()¸fi(’).

• Definition. The “critical value” price is: 
psi(ai,di,-i)= min w’i s.t. fi(<ai,di,w’i>, -i)=1

1 , if no such w’i exists

• Definition. The “critical period” is the first t2[ai,di] with 
minimal psi(ai,t,-i).

Theorem. An online auction is truthful if and only if the 
allocation rule, f, is monotonic, sets payment equal to 
critical value, and assigns item after the critical period. 

(H., Kleinberg, and Parkes., ACM-EC04)

• The only if proof is involved and uses an agent-independent    
price scheduling technique.



Extension: Multi-choice Secretary Problem

•choose k secretaries to maximize their joint performance 
•e.g. secretaries should form a feasible set in a matroid
•e.g. their joint performance function is submodular
•Improves and generalize several bounds in optimal stopping 
theory
•constant-competitive for the submodular secretary problem
•log(n)-competitive for the matroid secretary problem
•log2(n)-competitive for the submodular matroid secretary 
problem

(Kleinberg, SODA05,
Immorlica, Kleingberg,, Mahdian, WINE06,
Babaioff, Immorlica, Kleingberg, SODA07,
Babaioff, Immorlica, Kempe, Kleingberg, 
SIGecom Exch08,
Babaioff, Dinitz, Gupta, Immorlica, Talwas, 
SODA09,
Bateni, Hajiaghayi, ZadiMoghaddam, TALG’13, 
Etc.)



Extension: Reusable goods (Grid scheduling)

Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr
Duration: 1hr    1hr    1hr

• k goods in each time slot .
• Agent value <ai,di,wi>. Value for one time slot in [ai,di].

(H., Kleinberg, Mahdian, and Parkes, ACM-EC05)

Allocation rule for k= 1: In each period, t, allocate 

the good to the highest unassigned bid.

Payment rule for k= 1: Pay smallest amount could have bid 

and still received good (in some period).



Extension: Reusable goods (Grid scheduling)

Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr
Duration: 1hr    1hr    1hr

• k goods in each time slot .
• Agent value <ai,di,wi>. Value for one time slot in [ai,di].

• 2-competitive for efficiency (tight)

• log(n)-competitive for revenue with a randomized scheme 
(almost tight).

• Characterize truthful auctions with monotonic allocation 
rules

(H., Kleinberg, Mahdian, and Parkes, ACM-EC05)



Extension: Model-based Online Auctions
(v.s. Prior-free)

• seller has distributional knowledge of the bid values (e.g.,
via the history of past transactions in the market)

• combine automated mechanism design and Prophet 
inequalities (a technique from optimal stopping theory)
• optimal efficiency/revenue assuming price sequence is non-
decreasing (e.g. for airline tickets)
• Improve bounds for Prophet inequalityies with k stopping 
rules

(H., Kleinberg, Sandholm, AAAI07)



Extension: Adwords Auction

• Internet search engine companies, such as Google, Yahoo and 
MSN
• Adwords Market:businesses place bids for individual 
keywords  
• Online auction when assigning each search query to a bidder 
• 1-1/e competitive for  revenue (tight)

(Mehta, Saberi, Vazirani, Vazirani, JACM)



Other Extensions

• Auctions with expiring items [LN05]

• Auctions with unknown number of agents [HKS07]

• Practical implementations, e.g. in Tycoon (a market based 
distributed resource allocation system) [NBCSV05]

• Expressive online auctions [LKDP09]

• Multi-unit auctions with budgets [BCIMS05]

• Fair online equilibrium v.s. dominant online equilibrium (envy-
freeness vs truthfulness) [GHKKKM05, DFHS08]

• etc. 



Future Directions

• Real-World testing:
– when is a prior-free approach preferable to a model-based 

approach? (noisy prior, prior-free on non-adversarial world.)
– currently testing on an eBay problem, how useful is it to 

remove dynamic problem?

• Richer models:
– current models insufficiently expressive, e.g. for grid 

computing
– e.g., richer patience models, choices (A vs. B), bundles of 

resources (A and B).

• Better understanding of social networks
– e.g. twitter, facebook, [GHISR, WINE’09]
– Applications in online auctions and ad auctions



Thank you.

تشکر


