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Games

Game:
agents N = {1, . . . , n}

drivers

∀i ∈ N : finite strategy space Σi

possible paths from si to ti

∀i ∈ N : cost function ci : Σ1 × · · · × Σn → R

travel time

(S ∈ Σ1 × · · · × Σn is called state.)

Example: Network Congestion Games

latency function `e : N→ R for every edge e

c1(S) = 8 c2(S) = 8 c3(S) = 4

We consider only games with complete information.
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Nash Equilibria

c1(S) = 4
c2(S) = 1
c3(S) = 5
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Definition

pure Nash Equilibrium S ∈ Σ1 × · · · × Σn

⇐⇒ no player can unilaterally improve his costs in S

Nash Equilibrium = stable
(if players are uncoordinated, rational, selfish)

We do not consider mixed Nash equilibria in this tutorial.
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Properties of Equilibria

A lot of research on static properties of equilibria:
How much does society suffer from selfish behavior?

Let cost be some measure for social cost, e.g.,
cost(S) =

∑
i∈N ci(S) or cost(S) = maxi∈N ci(S).

price of anarchy = max
S∈NE

cost(S)

cost(Opt)

Focus of this tutorial: Questions about dynamics

Do uncoordinated agents reach an equilibrium?

How long does it take?

Do they quickly reach a state with small social cost?
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Nash Dynamics

Nash Dynamics: Sequence of best responses of players.

c1(S) = 8
c2(S) = 8
c3(S) = 2
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Nash Dynamics with Liveness Property: Each player gets a
chance to play his/her best response after at most t steps.

Random Nash Dynamics: Players are chosen uniformly at
random.

ε-Nash Dynamics: Players change their strategy only if they can
improve their own cost by a factor of at least 1 + ε.

Other dynamics (Noisy Nash Dynamics, Fictitious Play,
Regret-minimization Dynamics) are discussed later.
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The State Graph

state graph G = (V ,E)

(S1,S2,S3)
(S1,T2,S3)

(S1,S2,T3)

Player 2

Player 3

V = states E = better/best responses

Properties of dynamics can be phrased in terms of state graph:

pure Nash equilibrium = sink of state graph

potential game = acyclic state graph
⇒ players eventually reach equilibrium.
Example: Congestion Games

non-potential games = best responses may cycle.
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Congestion Games

Congestion Game:

set of players N
set of resourcesR
e.g., edges of a graph or set of servers
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set of strategies, ∀i ∈ N : Σi ⊆ 2R

Σi = {P ⊆ R | P path si → ti} (network congestion game)
Σi = {P ⊆ R | P path s → t} (symmetric netw. cong. game)
Σi = {T ⊆ R | T spanning tree}
Σi = {{r} | r ∈ R} (singleton congestion game)

latency functions ∀r ∈ R : `r : N→ N
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Rosenthal’s Potential Function
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Rosenthal (Int. Journal of Game Theory 1973)

Every congestion game admits an exact potential function.

Φ: Σ1 × · · · × Σn → N with 0 ≤ Φ ≤ n ·m · `max

player decreases his latency by x ∈ N⇒ Φ decreases by x as
well

nr = number of players i with r ∈ Si ∈ Σi

φ(S) =
∑
r∈R

nr∑
i=1

`r (i)

⇒ Number of better response at most n ·m · `max.
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Known Results on Convergence Time
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Fabrikant, Papadimitriou, Talwar (STOC 04)

There exist network congestion games with an initial
state from which all better response sequences
have exponential length.

Ieong, McGrew, Nudelman, Shoham, Sun (AAAI 05)

In singleton games all best response sequences
have length at most n2 ·m.

Ackermann, R., Vöcking (FOCS 06)

In spanning tree congestion games all best
response sequences have length at most
n2 ·m · number of vertices.

In matroid congestion games all best response
sequences have length at most n2 ·m · rank .
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Singleton Games

Singleton Games

Idea: Reduce latencies without
affecting the game!

equivalent latencies `r (x) ≤ n ·m

r r′

`r(nr) > `r′(nr′ + 1)

2/100/120/150 1/5/10/15

However, latency reduction works also for matroid games.
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Matroid Congestion Games

Ackermann, R., Vöcking (FOCS 2006)

Let (R, I) be any non-matroid anti-chain. Then, for every n, there
exists an n-player congestion game with the following properties.

each Σi is isomorphic to I,

there is a best response sequence of length 2Ω(n).

⇒ Matroid property is the maximal property on the individual players’
strategy spaces that guarantees polynomial convergence.
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PLS

Local Search Problem Π

set of instances IΠ

for I ∈ IΠ: set of feasible solutions F(I)

for I ∈ IΠ: objective function c : F(I)→ Z
for I ∈ IΠ and S ∈ F(I): neighborhood N (S, I) ⊆ F(I)

Johnson, Papadimitriou, Yannakakis (FOCS 85)

Π is in PLS if polynomial time algorithms exist for

finding initial feasible solution S ∈ F(I),

computing the objective value c(S),

finding a better solution in the neighborhood
N (S, I) if S is not locally optimal.
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PLS-reductions

PLS-reduction
Polynomial-time computable
function f : IΠ1 → IΠ2 .

Polynomial-time computable
function (S2 ∈ F(f (I)))
g : S2 7→ S1 ∈ F(I)

S2 locally optimal⇒
g(S2) locally optimal.

Π1

IΠ1 IΠ2

Π2

f

F(I) F(f (I))
g

local opt. of Π2 easy to find⇒ local opt. of Π1 easy to find

local opt. of Π1 hard to find⇒ local opt. of Π2 hard to find

A PLS-reduction is called tight if it does not shorten distances in the
state graph.
⇒ Exponential lower bounds are preserved.
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Party Affiliation Game:

Input: G(V ,E) and w : E → N
agents = nodes, Σi = {left, right}
w({u, v}) = antipathy of u and v

Schäffer, Yannakakis (SIAM J. Comput. 1991)

Finding a locally optimal cut is PLS-complete.

Very involved reduction from Circuit/Flip.

First PLS-complete problem: Circuit/Flip

C: Boolean circuit composed of AND, OR, and NOT gates.

Input to C: x1, . . . , xm ∈ {0, 1}. Output of C: y1, . . . , yn ∈ {0, 1}.

Objective function: f (x1, . . . , xm) =
∑n

i=1 2i−1yi .

Neighborhood = Hamming distance 1
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Congestion Games and PLS

Finding an equilibrium in a congestion game belongs to PLS:
objective function = Rosenthal’s potential function
S′ ∈ N (S) if S′ is obtained from S by better response of one of
the players.

PLS-completeness follows by reduction from MaxCut:
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Network Congestion Games and PLS

Fabrikant, Papadimitriou, Talwar (STOC 04)

Finding a pure Nash equilibrium in network congestion games is
PLS-complete.

Reduction from Circuit/Flip that reworks MaxCut reduction.
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Ackermann, R., Vöcking (FOCS 06)

Network congestion games are PLS-complete for
(un)directed networks with linear latency
functions.

Simple reduction from MaxCut.

All these PLS-reductions are tight.
⇒ There exist states exponentially far from all sinks in the state graph.
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Positive Result:

Chien, Sinclair (SODA 07)

In any symmetric congestion game with α-bounded jump condition,
the (1 + ε)-Nash dynamics converges after at most
poly(n, α, ε−1, log(`max)) steps, assuming liveness property.

Idea: high-cost player moves⇒ significant potential drop
S not (1 + ε)-equilibrium⇒ ∃ high-cost player that has an incentive to
move. (due to α-bounded jump condition and symmetry)
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Approximate Equilibria

What happens if players are lazy?

Approximate Equilibria

A state S = (S1, . . . ,Sn) is called (1 + ε)-approximate equilibrium if
∀i ∈ N : latency of player i ≤
(1 + ε) ·min achievable latency of player i

Negative Result:

Skopalik, Vöcking (STOC 2008)

It is PLS-hard to compute an (1 + ε)-approximate equilibrium for any
polynomial-time computable ε.

⇒ Exponentially many steps until (1 + ε)-approx. eq. is reached.
Very involved reduction from Circuit/Flip.



Summary of Convergence Results

Nash Dynamics ε-Nash Dynamics
Matroid poly poly

Symmetric Network exp poly
Asymmetric Network exp, PLS-complete exp
Symmetric General exp, PLS-complete poly
Asymmetric General exp, PLS-complete exp, PLS-complete

Cut Games exp, PLS-complete ?
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Non-potential Games

State Graph

(S1,S2,S3)
(S1,T2,S3)

(S1,S2,T3)

Player 2

Player 3

Sink equilibrium: [Goemans, M., Vetta (FOCS 2005)]
strongly connected comp. of state graph without outgoing edges

⇒ random Nash dynamics eventually reaches sink equilibrium



An Example
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Two agents: (r1 = 1, r2 = 2).

l1(x) = x + 33, l2(x) = 13x , l3(x) = 3x2, l4(x) = 6x2,
l5(x) = x2 + 44, and l6(x) = 47x .
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Two agents: (r1 = 1, r2 = 2).

Only Sink equilibrium: {(P1,P2), (P3,P2), (P3,P4), (P1,P4)}.
No Pure Nash equilibrium.



Non-potential Games

Sink equilibrium: [Goemans, M., Vetta (FOCS 2005)]
strongly connected comp. of state graph without outgoing edges

Complexity Questions about Nash Dynamics and sink equilibria:

1 Given a state in a game, is it in a sink equilibrium?

2 Given a game, determine if it has a pure Nash equilibrium?
3 Given a game, determine if it has any non-singleton sink

equilibrium?

Theorem (M., Skopalik, EC 2009)

For many classes of games with succinet representation, it is
PSPACE-hard to answer questions 1 and 3, and it is NP-hard to
answer question 2.

Player-specific and weighted congestion games.

Anonymous Games and Graphical Games.

Many-to-one two-sided market games.
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Games with Singleton Sink Equilibria

Interesting subclass: Games with only singleton sink equilibria

Milchtaich (Games and Economics Behaviour, 1996)

Player-specific singleton congestion games:

Pure Nash equilibria exist, but best resp. dyn. can cycle.

From every state there is a sequence of best responses to an
equilibrium.



How to find a stable marriage?

Let’s get to the really important problems. . .



The Stable Marriage Problem
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Formal Definition

Stable Matching

A matching is stable if there does not exist a blocking pair.

w m

w′ m′

(w ,m′) is blocking pair
⇐⇒

1) w prefers m′ to m
2) m′ prefers w to w ′

Theorem [Gale, Shapley 1962]

A stable matching can be computed efficiently.
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Applications and Previous Work

Many Applications: Interns/Hospitals, College Admission, Labor
market.

Main Question
What happens without central authority?

Do players reach a stable matching?

How long does it take?

Consecutive resolving of blocking pairs:

Knuth observed a cycle.

Roth and Vande Vate showed that there is no non-trivial sink
equilibrium (Econometrica 1990).
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Best Response Dynamics

Ackermann, Goldberg, M., R., Vöcking (EC 2008)

The best response dynamics can cycle.

Was shown for better response dynamics by Knuth.

Ackermann, Goldberg, M., R., Vöcking (EC 2008)

From every matching there exists a sequence of 2n2 best responses to
a stable matching.

Was shown for better response dynamics by Roth and Vande Vate.
⇒ Random best response dynamics reaches a stable matching with
probability 1.

Ackermann, Goldberg, M., R., Vöcking (EC 2008)

There exist instances such that the expected number of best
responses is Ω(cn) for some constant c > 1.

Similar exponential bound holds for better response dynamics.
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Best Response Dynamics – Upper Bound

Theorem

From every matching there exists a sequence of 2n2 best responses to
a stable matching.

Claim 1

If only married women play best responses, after at most n2 steps
every married woman is happy.

Claim 2
If every married woman is happy, every sequence of best responses
terminates after at most n2 steps.
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Φ =
∑
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rank of w ’s current partner

0 ≤ Φ ≤ n2 and Φ decreases with every best response.
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Best Response Dynamics – Upper Bound

Claim 2
If every married woman is happy, every sequence of best responses
terminates after at most n2 steps.

Proof.
Invariant: No married woman can improve.

⇒ Men are never dumped.
Use the following potential function:

Ψ =
∑

married man m

n + 1− rank of m’s current partner

0 ≤ Ψ ≤ n2 and Ψ increases with every best response.
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terminates after at most n2 steps.

Proof.
Invariant: No married woman can improve.
⇒ Men are never dumped.
Use the following potential function:

Ψ =
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married man m
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Further Results – Correlated Instances

Good news: Correlation helps!

Monotone Instances

Input: complete, weighted bipartite graph G = (V ,E ,w).
Every player tries to maximize the weight of her/his relationship.
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Large Price of Anarchy: Need for Central Regulation.
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Question 1: Potential Games: How fast do players converge to
approximate solutions? (and not to equilibria).
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Congestion Games: Conv. to Nearly-Optimal Sol.

Question 1 (Potential Games): How fast do players converge to
approximate solutions? (and not to equilibria).

Price of anarchy: 2.5 (Koutsoupias, Christoudolou,05 and
Awerbuch, Azar, Epstein, 05).

Congestion games are potential games, but convergence will
take exponential time even for approximate Nash Dynamics

How about convergence time to constant-factor approximate
solutions?
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Convergence to Nearly-optimal Solutions

Theorem (Awerbuch, Azar, Epstein, M., Skopalik, EC 2008)

Convergence time of Nash dynamics with liveness property to
constant-factor optimal solutions in linear congestion games might be
exponential.

This is in contrast to:

Theorem (Goemans, M., Vetta, FOCS 2005)

For Random Nash dynamics, convergence time to constant-factor
solutions in linear congestion games is polynomial.

Proof Idea: Three lemmas:
In any bad state, there exists a player who improves the average
by a large margin, thus there is a state.
In any bad state, the expected value of the change incurred by
players is not too bad.
Use induction on the above lemmas.

⇒ The price of anarchy for sink equilibrium is a constant.
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Theorem (Awerbuch, Azar,Epstein, M., Skopalik, EC 2008)

For a large class of potential games that are β-nice, and satisfy
bounded-jump condition, after polynomial steps of ε-Nash dynamics
with a liveness property, players converge to a solution with
approximation factor of price of anarchy.

Bounded-jump condition (informal): After a player i plays a best
response, the change in the payoff (cost) of other players is
bounded by the new payoff (cost) of player i .
For example:

Congestion games with constant-degree polynomial delay
functions,
Weighted congestion games with linear delay functions,
Party affiliation games,
Market sharing games.
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Summary of Convergence to Nearly-Optimal Solutions

Convergence to Nash equilibria: exponential
Convergence to nearly-optimal solutions:

Game PoA Nash Rand. Nash ε-Nash
Linear Congestion 2.5 expon poly, 70 poly, 2.5 + ε

Deg. d Cong. 2.5 expon poly, O(22d ) poly, O(2d ) + ε

Wei. Lin. Cong. 2.62 expon poly, 70 poly, 2.62 + ε

Cut Games 1
2 expon poly, 1

6 poly, 1
2 − ε

Market Sharing 1
2 poly, 1

log n poly, 1
log n poly, 1

2 − ε

For other games, check the β-nice and bounded jump condition.
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Sink Equilibria and Convergence

Question 2 (Non-Potential Games): What is the quality of
solutions that players converge to?

Price of anarchy for mixed NE might be good, but how about
convergence to good-quality solutions in non-potential games?

In other words, what is the price of anarchy of sink equilibria?
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Price of Anarchy for Sink equilibria

A sink equilibrium is a set of states.

Each state has a social value.

Social Value of a Sink equilibrium?

Social Value of a Sink equilibrium = Average Social value of states on
a random best-response walk.

Random Best-response Walk: Choose a player uniformly at
random at each step.

Price of anarchy for sink equilibrium =
value of the worst sink equilibrium

Opt .
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Sink Equilibria and Convergence

Theorem (Goemans, M., Vetta, FOCS 2005)

For weighted congestion games with constant-degree polynomial
delay functions, the price of anarchy for sink equilibria is constant.

Related to convergence of random Nash dynamics to constant-factor
approximate solutions.

Theorem (Goemans, M., Vetta, FOCS 2005)

For a general class of market sharing games (aka valid-utility games),
eventhough the price of anarchy for mixed NE is constant (1/2), the
price of anarchy for sink equilibria is very poor ( 1

n ).

⇒ Players may converge to a bad-quality solution and they may get
stuck there.
What if players follow other dynamics?
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Natural Distributed/Synchronous Dynamics

Fictitious Play
Best response to the empirical distribution of the opponents.
Nash equilibrium is an ”absorbing state”

Replicator dynamics
Each strategy survives according to its excess payoff
Most reasonable variants converge in potential games [Sandholm
JET 01]
Convergence rate [Fischer, Räcke, Vöcking STOC 06]

Noisy Nash dynamics.
At each step, there is a probability of not playing best response.
Convergence properties in Congestion Games [Asadpour, Saberi
2009].

No-regret dynamics.

Known to converge in specific games to Nash equilibrium.
There exist games on which uncoupled dynamics do not
converge [Hart and Mas-Collel].



No regret in Congestion Games

No-External-Regret

Is there a strategy that guarantees that the total routing time will
take almost as time as the best fixed path in hindsight?

No-Internal-Regret
Is there a strategy that guarantees that the total routing time
when it took path P will take almost as time as the best fixed path
in hindsight for that time steps?

We say that algorithm is No X-Regret if its regret to best static
decision, R(T ) is sublinear.
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Correlated Equilibria [Aumann 1974]

Distribution over N-tuples.

Nash Equilibrium with a shared signal
Independent signal - Nash equilibrium
Public signal - Convex combinations of Nash equilibrium
Private signal - not necessarily convex hull of Nash
equilibrium (e.g. chicken game)

Properties:

Contains the convex hull of Nash equilibrium.

Can be computed efficiently
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Equilibria Types

Mixed Nash Equilibrium 

Pure Nash Equilibrium

Correlated Equilibrium

No Regret



No Regret convergence

No-internal-regret convergence to Correlated equilibria
[Hart and Mas-Collel, Foster and Vohra] If every player plays a no
internal regret algorithm, then the empirical distributions of play
converge almost surely as t →∞ to the set of correlated
equilibrium distributions of the game
The convergence is of the empirical distributions and not at a
specific time.

No-external-regret and zero sum games
[Freund and Schapire Game and Economic Behavior 98]

No-external-regret and Routing games
Atomic games specific update rule[Kleinberg, Piliouras and Tardos
STOC 09], Parallel links [Blum, Even-dar and Ligett PODC 06]
Splittable traffic [Even-dar, Mansour and Nadav STOC 09]
Infinitesimal users (Wardrop model) [Blum, Even-dar and Ligett
PODC 06]
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Quality of playing no-regret

In congestion games same bounds hold through similar
arguments [Roughgarden STOC 09]

Valid utility games and Hotelling games [Blum et al. STOC
08]
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Load balancing example

Consider n parallel links and n identical users and Makespan metric
then:

Pure N.E and sink : PofA = 1

Mixed N.E: PofA = log n/ log log n

Correlated Eq. and No regret: PofA =
√

n
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Valid-Utility Games

Consider valid-utility games then:

Pure N.E to No Regret : PofA = 2

Sink Eq.: PofA ≥ n
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Learning Algorithms

In many realistic games learning algorithms can lead to Nash
equilibrium or high quality state.

Can be used for computing Nash equilibria.

What can we say about games where nice behavior is not
guaranteed?

Effect of using machine learning algorithms and game dynamics
in (ad) auctions (or everywhere...)



Conclusions and Future Directions

Questions about Dynamics

1 What do players converge to?
Find potential functions? Characterize sink equilibria?

2 How long does it take?
PLS-complete?

3 Do they quickly reach a state with small social cost?
Performance of equilibria? Random or ε-dynamics.

4 Take your favorite game and answer these questions.
Ad auctions, scheduling games, distributed caching games, . . .



Thank You

Special thanks to Eyal Even Dar for sharing his slides with us
from another joint tutorial.
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