Online Ad Serving: Theory and Practice

Vahab Mirrokni
(Three papers in collaboration with Googlers)

Google Research, New York

October 20, 2010
Contract-based Online Advertising

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
Contract-based Online Advertising

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- Not Auction-based: offline negotiations + Online allocations.
Contract-based Online Advertising

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- Not Auction-based: offline negotiations + Online allocations.

Display/Banner Ads:
- Q1, 2010: One Trillion Display Ads in US. $2.7 billion.
- Top Publishers: Facebook, Yahoo and Microsoft sites.
- Top Advertiser: AT&T, Verizon, Scottrade.
Contract-based Online Advertising

- Pageviews (impressions) instead of queries.
- Display/Banner Ads, Video Ads, Mobile Ads.
- Cost-Per-Impression (CPM).
- Not Auction-based: offline negotiations + Online allocations.

Display/Banner Ads:
- Q1, 2010: One Trillion Display Ads in US. $2.7 billion.
- Top Publishers: Facebook, Yahoo and Microsoft sites.
- Top Advertiser: AT&T, Verizon, Scottrade.
- Ad Serving Systems e.g. Facebook, Google Doubleclick, AdMob.
Display Ad Delivery: Overview

1. Planning: Contracts/Commitments with Advertisers.
2. Ad Serving:
 - Targeting: Predicting value of impressions.
 - Ad Allocation: Assigning Impressions to Ads Online.
1. **Planning**: Contracts/Commitments with Advertisers.
2. **Ad Serving**:
 - **Targeting**: Predicting value of impressions.
 - **Ad Allocation**: Assigning Impressions to Ads Online.
1. Planning: Contracts/Commitments with Advertisers.
2. Ad Serving:
 ▶ Targeting: Predicting value of impressions.
 ▶ Ad Allocation: Assigning Impressions to Ads Online.
1. **Planning:** Contracts/Commitments with Advertisers.
2. **Ad Serving:**
 - **Targeting:** Predicting value of impressions.
 - **Ad Allocation:** Assigning Impressions to Ads Online.

Display Ad Delivery: Overview

- **Planning:**
 - Offline, Online
 - Strategic, Stochastic

- **Forecasting**
 - Supply of impressions
 - Demand for ads

- **Ad Serving:**
 - **Targeting:**
 - **Allocation:**
 - Online, Stochastic

- **Delivery Constraints, Budget**

1. **Planning**: Contracts/Commitments with Advertisers.
2. **Ad Serving**:
 - **Targeting**: Predicting value of impressions.
 - **Ad Allocation**: Assigning Impressions to Ads Online.
Display Ad Delivery: Overview

- **Planning:** Offline, Online, Strategic, Stochastic
- **Forecasting:** Supply of impressions, Demand for ads
- **Ad Serving:**
 - **Targeting:** CTR
 - **Allocation:** Online, Stochastic

Objective Functions:
- Efficiency: Users and Advertisers. Revenue of the Publisher.
- Smoothness, Fairness, Delivery Penalty.
Targeting

Estimating Value of an impression.
Targeting

Estimating Value of an impression.

- Behavioral Targeting
 - Interest-based Advertising.
 - Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?
Targeting

Estimating Value of an impression.

▶ Behavioral Targeting
 ▶ Interest-based Advertising.
 ▶ Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?

▶ Contextual Targeting
 ▶ Information Retrieval (IR).
 ▶ Broder, Fontoura, Josifovski, Riedel, A semantic approach to contextual advertising
Targeting

Estimating Value of an impression.

- Behavioral Targeting
 - Interest-based Advertising.
 - Yan, Liu, Wang, Zhang, Jiang, Chen, 2009, How much can Behavioral Targeting Help Online Advertising?

- Contextual Targeting
 - Information Retrieval (IR).
 - Broder, Fontoura, Josifovski, Riedel, A semantic approach to contextual advertising

- Creative Optimization
 - Experimentation
Predicting value of Impressions for Display Ads

- Estimating Click-Through-Rate (CTR).
 - Budgeted Multi-armed Bandit
- Probability of Conversion.
Predicting value of Impressions for Display Ads

- Estimating Click-Through-Rate (CTR).
 - Budgeted Multi-armed Bandit
- Probability of Conversion.
- Long-term vs. Short-term value of display ads?
 - Archak, Mirrokni, Muthukrishnan, 2010 Graph-based Models.
 - Computing Adfactors based on AdGraphs
 - Markov Models for Advertiser-specific User Behavior
Contract-based Ad Delivery: Outline

- Basic Information
- Ad Planning: Reservation
- Ad Serving.
 - Targeting.
 - Online Ad Allocation
Outline: Online Allocation

- Online Stochastic Assignment Problems
 - Online (Stochastic) Matching
 - Online Generalized Assignment (with free disposal)
 - Online Stochastic Packing
 - Experimental Results

- Online Learning and Allocation
Online Ad Allocation

When page arrives, assign an eligible ad.

- value of assigning page i to ad a: v_{ia}

Display Ads (DA) problem:

Maximize value of ads served: $\max \sum_i v_{ia} x_{ia}$

Capacity of ad a: $\sum_{i \in A(a)} x_{ia} \leq C_a$

$v(i,a) = \text{value (e.g., click prob.)}$

... pageviews arrive online ...
Online Ad Allocation

When page arrives, assign an eligible ad.

- value of assigning page i to ad a: v_{ia}

Display Ads (DA) problem:

- Maximize value of ads served: $\max \sum_{i,a} v_{ia} x_{ia}$
- Capacity of ad a: $\sum_{i \in A(a)} x_{ia} \leq C_a$
Online Ad Allocation

- When page arrives, assign an eligible ad.
 - revenue from assigning page i to ad a: b_{ia}
- “AdWords” (AW) problem:
 - Maximize revenue of ads served: $\max \sum_{i,a} b_{ia}x_{ia}$
 - Budget of ad a: $\sum_{i \in A(a)} b_{ia}x_{ia} \leq B_a$
General Form of LP

\[
\max \sum_{i,a} v_{ia} x_{ia} \\
\sum_a x_{ia} \leq 1 \quad (\forall \ i) \\
\sum_i s_{ia} x_{ia} \leq C_a \quad (\forall \ a) \\
x_{ia} \geq 0 \quad (\forall \ i, a)
\]

- Online Matching: \(v_{ia} = s_{ia} = 1\)
- Disp. Ads (DA): \(s_{ia} = 1\)
- AdWords (AW): \(s_{ia} = v_{ia}\)
General Form of LP

\[
\begin{align*}
\text{max } & \sum_{i,a} v_{ia} x_{ia} \\
\sum_{a} x_{ia} & \leq 1 \quad (\forall \ i) \\
\sum_{i} s_{ia} x_{ia} & \leq C_a \quad (\forall \ a) \\
x_{ia} & \geq 0 \quad (\forall \ i, a)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Worst-Case</th>
<th>Online Matching:</th>
<th>Disp. Ads (DA):</th>
<th>AdWords (AW):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{ia} = s_{ia} = 1)</td>
<td>(s_{ia} = 1)</td>
<td>(s_{ia} = v_{ia})</td>
<td>([\text{MSVV,BJN}]: 1 - \frac{1}{e})-aprx</td>
</tr>
<tr>
<td>Greedy: (\frac{1}{2}), ([\text{KVV}]: 1 - \frac{1}{e})-aprx</td>
<td>Inapproximable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ad Allocation: Problems and Models

<table>
<thead>
<tr>
<th>Worst Case</th>
<th>Online Matching: $v_{ia} = s_{ia} = 1$</th>
<th>Disp. Ads (DA): $s_{ia} = 1$</th>
<th>AdWords (AW): $s_{ia} = v_{ia}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$-aprx</td>
<td>Inapproximable ?</td>
<td>[MSVV,BJN]: $1 - \frac{1}{e}$-aprx</td>
<td></td>
</tr>
</tbody>
</table>
Ad Allocation: Problems and Models

<table>
<thead>
<tr>
<th></th>
<th>Online Matching: $v_{ia} = s_{ia} = 1$</th>
<th>Disp. Ads (DA): $s_{ia} = 1$</th>
<th>AdWords (AW): $s_{ia} = v_{ia}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$-aprx</td>
<td>Inapproximable ?</td>
<td>[MSVV,BJN]: $1 - \frac{1}{e}$-aprx</td>
</tr>
<tr>
<td>Stochastic (i.i.d.)</td>
<td>?</td>
<td>?</td>
<td>[DH09]: $1 - \epsilon$-aprx, if OPT \gg max v_{ia}</td>
</tr>
</tbody>
</table>

Stochastic i.i.d model:

- i.i.d model with known distribution
- random order model (i.i.d model with unknown distribution)
Ad Allocation: Problems and Models

<table>
<thead>
<tr>
<th></th>
<th>Online Matching: (v_{ia} = s_{ia} = 1)</th>
<th>Disp. Ads (DA): (s_{ia} = 1)</th>
<th>AdWords (AW): (s_{ia} = v_{ia})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>Greedy: (\frac{1}{2}, [KVV]: 1 - \frac{1}{e})-aprx (?)</td>
<td>Inapproximable (?)</td>
<td>([MSVV,BJN]: 1 - \frac{1}{e})-aprx (?)</td>
</tr>
<tr>
<td>Stochastic</td>
<td>([FMMM09]: 0.67)-aprx (i.i.d) with known distribution (?)</td>
<td>(?)</td>
<td>([DH09]: 1 - \epsilon)-aprx, if (\text{OPT} \gg \max v_{ia})</td>
</tr>
</tbody>
</table>

Stochastic i.i.d model:

- i.i.d model with known distribution
- random order model (i.i.d model with unknown distribution)
Online Stochastic Matching: Motivation

- Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].
Online Stochastic Matching: Motivation

- Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].

- Primal Algorithm:
 - Construct an expected instance,
 - Compute an optimal solution to this expected instance,
 - Use this solution to guide the online allocation.
Online Stochastic Matching: Motivation

- Pageview supply from the past should tell us something about the future [Parkes, Sandholm, SSA 2005][Abrams, Mendelevitch, Tomlin, EC 07] [Boutilier, Parkes, Sandholm, Walsh AAAI 08].

- Primal Algorithm:
 - Construct an expected instance,
 - Compute an optimal solution to this expected instance,
 - Use this solution to guide the online allocation.

- Can we extend the theory of online algorithms to this architecture?
Online Stochastic Matching: iid (known dist.)

Given (offline):
- Bipartite graph $G = (A, I, E)$,
- Distribution D over I.

Online:
- n indep. draws from D.
- Must assign nodes upon arrival.
Primal Algorithm: “Two-suggested-matchings”

“ALG is α-approximation?” if w.h.p., $\frac{\text{ALG}(H)}{\text{OPT}(H)} \geq \alpha$

Simple Primal Algorithm:

- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1 - \frac{1}{e}$-approximation.

Better Algorithm: Two-Suggested-Matchings

- Offline: Find two disjoint matchings, blue (B) and red (R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.

Theorem: Tight $1 - \frac{2}{e^2} - \frac{2}{3e} \geq 0.67$ (Feldman, M., M., Muthukrishnan, 2009).
Primal Algorithm: “Two-suggested-matchings”

“ALG is α-approximation?” if w.h.p., $\frac{\text{ALG}(H)}{\text{OPT}(H)} \geq \alpha$

Simple Primal Algorithm:

- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1 - \frac{1}{e}$-approximation.

Better Algorithm: Two-Suggested-Matchings

- Offline: Find two disjoint matchings, blue(B) and red(R), on the expected graph G.
- Online: try the blue matching first, then if that doesn’t work, try the red one.
Primal Algorithm: “Two-suggested-matchings”

“ALG is α-approximation?” if w.h.p., $\frac{\text{ALG}(H)}{\text{OPT}(H)} \geq \alpha$

Simple Primal Algorithm:
- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1 - \frac{1}{e}$-approximation.

Better Algorithm: Two-Suggested-Matchings
- Offline: Find two disjoint matchings, blue(B) and red(R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.
- Thm: Tight $\frac{1-2/e^2}{4/3-2/3e} \geq 0.67$

(Feldman, M., M., Muthukrishnan, 2009).
Background: Balls in bins

- Suppose \(n \) balls thrown into \(n \) bins, i.i.d. uniform.
Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - B = particular subset of bins.
Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - $B =$ particular subset of bins.
 - $s =$ # bins in B with ≥ 1 ball.
Background: Balls in bins

- Suppose n balls thrown into n bins, i.i.d. uniform.
- # non-empty bins concentrates:
 - $B = \text{particular subset of bins}$.
 - $s = \# \text{bins in } B \text{ with } \geq 1 \text{ ball}$.
 - Then w.h.p., $s \approx |B|\left(1 - \frac{1}{e}\right)$.
Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- Bounding ALG: Classify $a \in A$ based on its neighbors in the blue and red matchings: A_{BR}, A_{BB}, A_B, A_R

$$ALG \geq \left(1 - \frac{1}{e^2}\right)|A_{BB}| + \left(1 - \frac{2}{e^2}\right)|A_{BR}| + \left(1 - \frac{3}{2e}\right)(|A_B| + |A_R|)$$
Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- Bounding ALG: Classify \(a \in A \) based on its neighbors in the blue and red matchings: \(A_{BR}, A_{BB}, A_B, A_R \)

\[
ALG \geq \left(1 - \frac{1}{e^2}\right)|A_{BB}| + \left(1 - \frac{2}{e^2}\right)|A_{BR}| + \left(1 - \frac{3}{2e}\right)(|A_B| + |A_R|)
\]

- Bounding \(OPT \): Find min-cut in augmented expected graph \(G \), and use it min-cut in \(G \) as a “guide” for cut in each scenario.
First Attempt: “Suggested matching”

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.
First Attempt: “Suggested matching”

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1 - 1/e$.

Proof:
Suppose G = complete graph.
Then $\text{OPT}(H) = n$.
But w.h.p. only $1 - 1/e$ fraction of I will ever arrive.
$\implies \text{ALG} \approx (1 - 1/e) n$.
In fact, this algorithm does achieve $1 - 1/e$ (in paper).
First Attempt: “Suggested matching”

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1 - 1/e$.

- Proof:
 - Suppose G = complete graph.
First Attempt: “Suggested matching”

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1 - 1/e$.

- Proof:
 - Suppose $G =$ complete graph.
 - Then $\text{OPT}(H) = n$.

First Attempt: “Suggested matching”

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1 - 1/e$.

- **Proof:**
 - Suppose $G = \text{complete graph}$.
 - Then $\text{OPT}(H) = n$.
 - But w.h.p. only $1 - 1/e$ fraction of I will ever arrive.
 \[\implies \text{ALG} \approx (1 - 1/e)n. \]
First Attempt: “Suggested matching”

1. Find a maximum matching in G.
2. Use that matching as nodes arrive online.

- Does no better than $1 - 1/e$.

- Proof:
 - Suppose $G = \text{complete graph}$.
 - Then $\text{OPT}(H) = n$.
 - But w.h.p. only $1 - 1/e$ fraction of I will ever arrive.
 \[\implies \text{ALG} \approx (1 - 1/e) n. \]

- In fact, this algorithm does achieve $1 - 1/e$ (in paper).
New ALG: “Two suggested matchings”

1. Offline: Find two disjoint matchings
2. Online: try the first one, then if that doesn’t work, try the second one.
New ALG: “Two suggested matchings”

Warmup: complete graph

- Two disjoint perfect matchings: blue (1-ary), red (2-ary).
New ALG: “Two suggested matchings”

Warmup: complete graph

- Two disjoint perfect matchings: blue (1-ary), red (2-ary).
- Union of matchings = cycles with alt. blue and red edges
New ALG: “Two suggested matchings”

For particular node $a \in A$:

$$\Pr[a \text{ is chosen }] \geq \Pr[i \text{ arrives once, or } i' \text{ arrives twice}]$$

$$= 1 - \Pr[i \text{ never arrives } \& i' \text{ arrives } \leq \text{ once}]$$

$$= 1 - (1 - 2/n)^n + n(1/n)(1 - 2/n)^{n-1}$$

$$\approx 1 - 2/e^2$$

Thus, $E[\# \text{ nodes in } A \text{ chosen}] \approx (1 - 2/e^2)n \approx .729n$

(This also concentrates...)
Algorithm (Offline)

- How to find a matching with flow.

![Graph](image-url)
Algorithm (Offline)

How to find a matching with flow.

S

A

I

t

▶ Solve an “augmented flow” problem instead.
▶ Examine edges in flow.
▶ Color the edges as shown.
Algorithm (Offline)

- How to find a matching with flow.

▶ Solve an “augmented flow” problem instead.
▶ Examine edges in flow.
▶ Color the edges as shown...
Algorithm (Offline)

- How to find a matching with flow.
 - Solve an “augmented flow” problem instead.
 - Examine edges in flow.
 - Color the edges as shown.
▶ How to find a matching with flow.
▶ Solve an “augmented flow” problem instead.
▶ Examine edges in flow.
▶ Color the edges as shown.
Algorithm (Offline)

- How to find a matching with flow.
- Solve an "augmented flow" problem instead.
- Examine edges in flow.
Algorithm (Offline)

▶ How to find a matching with flow.
▶ Solve an "augmented flow" problem instead.
▶ Examine edges in flow.
▶ Color the edges as shown
Algorithm (Online)

- When node \(i \in I \) arrives:
 - Try the blue edge first, then the red edge.
Algorithm (Online)

- Consider a node $a \in A$:
 - $\Pr[a \text{ is chosen }] \geq \Pr[i \text{ arrives once, or } i' \text{ arrives twice}]$
Performance of the Algorithm

- Classify \(a \in A \) based on its neighbors in the flow.

\[
|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|
\]
Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$$

- Using Balls-in-bins concentration results (Azuma's inequality):
Performance of the Algorithm

- Classify \(a \in A \) based on its neighbors in the flow.
 \[
 |\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|
 \]

- Using Balls-in-bins concentration results (Azuma’s inequality):
 - \(a \in A_B \). We get at least \(|A_B|(1 - 1/e)\).
Performance of the Algorithm

- Classify \(a \in A \) based on its neighbors in the flow.

\[
|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_{B}| + |A_{R}|
\]

- Using Balls-in-bins concentration results (Azuma’s inequality):
 - \(a \in A_{B} \). We get at least \(|A_{B}|\left(1 - \frac{1}{e}\right)\).
 - \(a \in A_{BR} \). We get at least \(|A_{BR}|\left(1 - \frac{2}{e^2}\right)\).
Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

\[|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R| \]

- Using Balls-in-bins concentration results (Azuma’s inequality):
 - $a \in A_B$. We get at least $|A_B|(1 - 1/e)$.
 - $a \in A_{BR}$. We get at least $|A_{BR}|(1 - 2/e^2)$.
 - $a \in A_{BB}$. We get at least $|A_{BB}|(1 - 1/e^2)$.
Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$$

- Using Balls-in-bins concentration results (Azuma’s inequality):

 - $a \in A_B$. We get at least $|A_B|(1 - 1/e)$.
 - $a \in A_{BR}$. We get at least $|A_{BR}|(1 - 2/e^2)$.
 - $a \in A_{BB}$. We get at least $|A_{BB}|(1 - 1/e^2)$.
 - $a \in A_R$. We get at least $|A_R|(1 - 2/e)$.
Performance of the Algorithm

- Classify $a \in A$ based on its neighbors in the flow.

$$|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|$$

- Using Balls-in-bins concentration results (Azuma’s inequality):

 - $a \in A_B$. We get at least $|A_B|(1 - 1/e)$.
 - $a \in A_{BR}$. We get at least $|A_{BR}|(1 - 2/e^2)$.
 - $a \in A_{BB}$. We get at least $|A_{BB}|(1 - 1/e^2)$.
 - $a \in A_R$. We get at least $|A_R|(1 - 2/e)$.

- Bound on ALG in terms of flow (using $|B| \geq |R|$):

$$ALG \geq \left(1 - \frac{1}{e^2}\right)|A_{BB}| + \left(1 - \frac{2}{e^2}\right)|A_{BR}| + \left(1 - \frac{3}{2e}\right)(|A_B| + |A_R|)$$
Bounding OPT

- Find min-cut in augmented flow graph (from \(G \)).
- \(E_\delta \) is a matching.
- By max-flow min-cut,

\[
|\text{flow}| = 2(|A_T| + |I_S|) + |E_\delta|.
\]
Bounding OPT

- \(\text{OPT} \leq \text{cut}(H) \). (Remember \(H = (A, \hat{I}, \hat{E}) \).)
- Use min-cut in \(G \) as “guide” for cut in \(H \).
- W.h.p., \(|I_S| \approx |\hat{I}_S| \). \(E_\delta \)?
- For any node \(a \in S \) with an edge in the cut in \(\hat{E}(H) \), move it to \(T \Rightarrow \# \) nonempty nodes in \(E_\delta \Rightarrow (1 - \frac{1}{e})E_\delta \).
Putting things together

Eventually (after moving a few nodes around) you get

\[OPT \lesssim |I_s| + |A_T| + (1 - 1/e)|E_\delta|. \]
Putting things together

- Eventually (after moving a few nodes around) you get
 \[OPT \lesssim |I_S| + |A_T| + (1 - 1/e)|E_\delta|. \]
- A lemma relating the decomposition to the cut gives
 \[|E_\delta| \leq \frac{2}{3}|A_{BR}| + \frac{4}{3}|A_{BB}| + |A_B| + \frac{1}{3}|A_R|. \]
Putting things together

- Eventually (after moving a few nodes around) you get
 - \(OPT \lesssim |I_S| + |A_T| + (1 - 1/e)|E_\delta|. \)

- A lemma relating the decomposition to the cut gives
 - \(|E_\delta| \leq \frac{2}{3}|A_{BR}| + \frac{4}{3}|A_{BB}| + |A_B| + \frac{1}{3}|A_R|, \)

 which, when combined with
 - \(|\text{flow}| = 2(|A_T| + |I_S|) + |E_\delta| \)
 - \(|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|, \)
 - \(ALG \geq (1 - \frac{1}{e^2})|A_{BB}| + (1 - \frac{2}{e^2})|A_{BR}| + (1 - \frac{3}{2e})(|A_B| + |A_R|), \)

 gives
 - \(\frac{ALG}{OPT} \geq \min\{ \frac{1-1/e^2}{5/3-4/3e}, \frac{1-2/e^2}{4/3-2/3e}, \frac{1-3/2e}{1-1/e} \} \)
 - \(\frac{ALG}{OPT} \geq .67 \)
Putting things together

- Eventually (after moving a few nodes around) you get
 - $OPT \lesssim |I_S| + |A_T| + (1 - 1/e)|E_\delta|.$

- A lemma relating the decomposition to the cut gives
 - $|E_\delta| \leq \frac{2}{3} |A_{BR}| + \frac{4}{3} |A_{BB}| + |A_B| + \frac{1}{3} |A_R|,$

- which, when combined with
 - $|\text{flow}| = 2(|A_T| + |I_S|) + |E_\delta|$
 - $|\text{flow}| = 2|A_{BR}| + 2|A_{BB}| + |A_B| + |A_R|,$
 - $\text{ALG} \geq (1 - \frac{1}{e^2})|A_{BB}| + (1 - \frac{2}{e^2})|A_{BR}| + (1 - \frac{3}{2e})(|A_B| + |A_R|),$ gives
 - $\frac{\text{ALG}}{\text{OPT}} \geq \min\{\frac{1-1/e^2}{5/3-4/3e}, \frac{1-2/e^2}{4/3-2/3e}, \frac{1-3/2e}{1-1/e}\}$
 - $\frac{\text{ALG}}{\text{OPT}} \geq .67$

- The analysis is tight.
Ad Allocation: Problems and Models

<table>
<thead>
<tr>
<th></th>
<th>Online Matching: (v_{ia} = s_{ia} = 1)</th>
<th>Disp. Ads (DA): (s_{ia} = 1)</th>
<th>AdWords (AW): (s_{ia} = v_{ia})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>Greedy: (\frac{1}{2}), [KVV]: (1 - \frac{1}{e})-aprx</td>
<td>Inapproximable ?</td>
<td>[MSVV,BJN]: (1 - \frac{1}{e})-aprx</td>
</tr>
<tr>
<td>Stochastic</td>
<td>[FMMM09]: 0.67-aprx, i.i.d with known distribution</td>
<td>?</td>
<td>[DH09]: (1 - \epsilon)-aprx, if (\text{OPT} \gg \max v_{ia})</td>
</tr>
</tbody>
</table>
Ad Allocation: Problems and Models

<table>
<thead>
<tr>
<th></th>
<th>Online Matching: $v_{ia} = s_{ia} = 1$</th>
<th>Disp. Ads (DA): $s_{ia} = 1$</th>
<th>AdWords (AW): $s_{ia} = v_{ia}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$-aprx</td>
<td>Inapproximable ?</td>
<td>[MSVV, BJN]: $1 - \frac{1}{e}$-aprx</td>
</tr>
<tr>
<td>Stochastic (i.i.d.)</td>
<td>[FMMM09]: 0.67-aprx, i.i.d with known distribution</td>
<td>[FHKMS10, AWY]: 1$-\epsilon$-aprx, if OPT \gg max v_{ia} and $n \gg m$</td>
<td>[DH09]: 1$-\epsilon$-aprx, if OPT \gg max v_{ia}</td>
</tr>
</tbody>
</table>

Random order = i.i.d. model with unknown distribution
Stochastic DA: Dual Algorithm

\[
\begin{align*}
\max & \sum_{i, a} v_{ia} x_{ia} \\
\sum_a x_{ia} & \leq 1 \quad (\forall \ i) \\
\sum_i x_{ia} & \leq C_a \quad (\forall \ a) \\
x_{ia} & \geq 0 \quad (\forall \ i, a)
\end{align*}
\]

\[
\begin{align*}
\min & \sum_a C_a \beta_a + \sum_i z_i \\
z_i & \geq v_{ia} - \beta_a \quad (\forall i, a) \\
\beta_a, z_i & \geq 0 \quad (\forall i, a)
\end{align*}
\]

Algorithm:
- Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_a, by solving the dual program on the sample.
- Assign each impression i to ad a that maximizes $v_{ia} - \beta_a$.

Feldman, Henzinger, Korula, M., Stein 2010

Thm\[FHKMS10,AWY\]: W.h.p, this algorithm is a $(1 - O(\epsilon))$-aprx, as long as each item has low value ($v_{ia} \leq \epsilon \cdot \text{opt}$), and large capacity ($C_a \leq m \log n / \epsilon^3$).

Fact: If optimum β^*_a are known, this alg. finds opt

Proof: Comp. slackness. Given β^*_a, compute x^* as follows:

\[
x_{ia}^* = 1 \text{ if } a = \arg\max (v_{ia} - \beta^*_a)
\]
Stochastic DA: Dual Algorithm

\[
\begin{align*}
\max \sum_{i,a} v_{ia} x_{ia} \\
\sum_{a} x_{ia} &\leq 1 \quad (\forall \ i) \\
\sum_{i} x_{ia} &\leq C_{a} \quad (\forall \ a) \\
x_{ia} &\geq 0 \quad (\forall \ i, a)
\end{align*}
\]

\[
\begin{align*}
\min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i} \\
z_{i} &\geq v_{ia} - \beta_{a} \quad (\forall i, a) \\
\beta_{a}, z_{i} &\geq 0 \quad (\forall i, a)
\end{align*}
\]

Algorithm:
- Observe the first \(\epsilon \) fraction sample of impressions.
- Learn a dual variable for each ad \(\beta_{a} \), by solving the dual program on the sample.
- Assign each impression \(i \) to ad \(a \) that maximizes \(v_{ia} - \beta_{a} \).
Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010

Thm[FHKMS10,AWY]: W.h.p, this algorithm is a \((1 − O(ε))\)-aprx, as long as each item has low value \((v_{ia} ≤ \frac{ε^{OPT}}{m \log n})\), and large capacity \((C_a ≤ \frac{m \log n}{ε^3})\).
Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010

Thm[FKMS10,AWY]: W.h.p, this algorithm is a \((1 - O(\epsilon))\)-aprx, as long as each item has low value \((v_{ia} \leq \frac{\epsilon \text{OPT}}{m \log n})\), and large capacity \((C_a \leq \frac{m \log n}{\epsilon^3})\).

Fact: If optimum \(\beta^*_a\) are known, this alg. finds \(\text{OPT}\).

- **Proof:** Comp. slackness. Given \(\beta^*_a\), compute \(x^*\) as follows: \(x^*_{ia} = 1\) if \(a = \arg\max(v_{ia} - \beta^*_a)\).
Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010

Thm[FHKMS10,AWY]: W.h.p, this algorithm is a \((1 - O(\epsilon))\)-aprx, as long as each item has low value \((v_{ia} \leq \frac{\epsilon \text{OPT}}{m \log n})\), and large capacity \((C_a \leq \frac{m \log n}{\epsilon^3})\)

Fact: If optimum \(\beta_a^*\) are known, this alg. finds \(\text{OPT}\)

Proof: Comp. slackness. Given \(\beta_a^*\), compute \(x^*\) as follows:
\[x_{ia}^* = 1 \text{ if } a = \arg\max(v_{ia} - \beta_a^*). \]

Lemma: In the random order model, W.h.p., the sample \(\beta_a'\) are close to \(\beta_a^*\).

Extending DH09.
General Stochastic Packing LPs

- *m* fixed resources with capacity *C*$_a$
- *Items* *i* arrive online with options *O*$_i$, values *v*$_{io}$, rsnc. use *s*$_{ioa}$.
 - Choose *o* \in *O*$_i$, using up capacity *s*$_{ioa}$ in all *a*.

Thm[FKHMS10,AWY]: W.h.p, the PD algorithm is a $(1-O(\epsilon))$-aprx, as long as items have low value ($v_{io} \leq \frac{\epsilon_{OPT}}{\log n}$) and small size ($s_{ioa} \leq \frac{\epsilon^3 C_a}{\log n}$).
General Stochastic Packing LPs

- m fixed resources with capacity C_a
- Items i arrive online with options O_i, values v_{io}, rsr. use s_{ioa}.
 - Choose $o \in O_i$, using up capacity s_{ioa} in all a.

Thm[FHKMS10,AWY]: W.h.p, the PD algorithm is a $(1 - O(\epsilon))$-aprx, as long as items have low value ($v_{io} \leq \frac{\epsilon \text{OPT}}{\log n}$) and small size ($s_{ioa} \leq \frac{\epsilon^3 C_a}{\log n}$).

Other Results and Extensions (random order model):
- Agrawal, Wang, Ye: Updating dual variables by periodic solution of the dual program: $C_a \leq \frac{m \log n}{\epsilon^2}$ or $s_{ioa} \leq \frac{\epsilon^2 C_a}{M}$.
General Stochastic Packing LPs

- *m* fixed *resources* with capacity *C_a*
- *Items* *i* arrive online with *options* *O_i*, *values* *v_{io}*, *rsr.* use *s_{io}a*.
 - Choose *o ∈ O_i*, using up capacity *s_{io}a* in all *a*.

Thm[FHKMS10,AWY]: W.h.p, the PD algorithm is a
\((1 - O(\epsilon))\)-aprx, as long as items have low value \((v_{io} \leq \frac{\epsilon^{OPT}}{\log n})\) and small size \((s_{io}a \leq \frac{\epsilon^3 C_a}{\log n})\).

Other Results and Extensions (random order model):

- **Agrawal, Wang, Ye**: Updating dual variables by periodic solution of the dual program: \(C_a \leq \frac{m \log n}{\epsilon^2}\) or \(s_{io}a \leq \frac{\epsilon^2 C_a}{M}\)
- **Vee, Vassilvitskii, Shanmugasundaram 2010**: extension to convex objective functions: Using KKT conditions.
Ad Allocation: Problems and Models

<table>
<thead>
<tr>
<th></th>
<th>Online Matching: $v_{ia} = s_{ia} = 1$</th>
<th>Disp. Ads (DA): $s_{ia} = 1$</th>
<th>AdWords (AW): $s_{ia} = v_{ia}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$-aprx</td>
<td>Inapproximable ?</td>
<td>[MSVV,BJN]: $1 - \frac{1}{e}$-aprx</td>
</tr>
<tr>
<td>Stochastic (i.i.d.)</td>
<td>[FMMM09]: 0.67-aprx, i.i.d with known distribution</td>
<td>[FHKMS10,AWY]: $1 - \epsilon$-aprx, if $\text{OPT} \gg \max v_{ia}$ and $n \gg m$</td>
<td>[DH09]: $1 - \epsilon$-aprx, if $\text{OPT} \gg \max v_{ia}$</td>
</tr>
<tr>
<td></td>
<td>Online Matching: $v_{ia} = s_{ia} = 1$</td>
<td>Disp. Ads (DA): $s_{ia} = 1$</td>
<td>AdWords (AW): $s_{ia} = v_{ia}$</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Worst Case</td>
<td>Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$-aprx</td>
<td>Inapproximable</td>
<td>[MSVV,BJN]: $1 - \frac{1}{e}$-aprx</td>
</tr>
<tr>
<td>Stochastic</td>
<td>[FMMM09]: 0.67-aprx, i.i.d with known distribution</td>
<td>[FHKMS10,AWy]: $1 - \epsilon$-aprx, if $\text{OPT} \gg \max v_{ia}$ and $n \gg m$</td>
<td>[DH09]: $1 - \epsilon$-aprx, if $\text{OPT} \gg \max v_{ia}$</td>
</tr>
</tbody>
</table>
Ad 1: \(C_1 = 1 \)

Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.
Ad 1: \(C_1 = 1 \)
Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.
Ad 1: $C_1 = 1$

- Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.
Ad 1: $C_1 = 1$

- Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.
- Value of advertiser = sum of values of top C_a items she gets.
Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain = (imp. value - min. impression value).

Evenly Split?
Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain = (imp. value - min. impression value).

- Competitive Ratio: 1/2. [NWF78]
 - Follows from submodularity of the value function.
Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain = (imp. value - min. impression value).

- Competitive Ratio: 1/2. [NWF78]
 - Follows from submodularity of the value function.

```
Ad 1: C1 = n
Ad 2: C2 = n
```

Evenly Split?
Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain = (imp. value - min. impression value).

- Competitive Ratio: 1/2. [NWF78]
 - Follows from submodularity of the value function.

\[
\begin{align*}
 n \text{ copies} & \quad 1 & Ad 1: \ C_1 = n \\
 1 + \epsilon & \quad 1 & Ad 2: \ C_2 = n
\end{align*}
\]
Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain = (imp. value - min. impression value).

- Competitive Ratio: $1/2$. [NWF78]
 - Follows from submodularity of the value function.

\[\begin{align*}
 \text{Ad 1: } C_1 &= n \\
 \text{Ad 2: } C_2 &= n
\end{align*} \]

Evenly Split?
A better algorithm?

Assign impression to an advertiser a
maximizing $(\text{imp. value} - \beta_a)$,
where $\beta_a =$ average value of top C_a impressions assigned to a.
A better algorithm?

Assign impression to an advertiser a maximizing $(\text{imp. value} - \beta_a)$, where $\beta_a =$ average value of top C_a impressions assigned to a.

1

1 + ϵ

n copies \rightarrow 1

n copies \rightarrow Ad 1: $C_1 = n$

$1 + \epsilon$

n copies \rightarrow Ad 2: $C_2 = n$

ϵ

\rightarrow Ad 1: $C_1 = n$

\rightarrow Ad 2: $C_2 = n$

Competitive Ratio: $1 - \frac{1}{2}$ if $C_a \gg 1$. [FKMMP09]

Primal-Dual Approach.
A better algorithm?

Assign impression to an advertiser \(a \)
maximizing \((\text{imp. value} - \beta_a)\),
where \(\beta_a \) = average value of top \(C_a \) impressions assigned to \(a \).

\[
\begin{align*}
n \text{ copies} & \quad \xrightarrow{1} \quad \text{Ad 1: } C_1 = n \\
1 + \epsilon & \quad \xrightarrow{} \quad \text{Ad 2: } C_2 = n
\end{align*}
\]

▶ Competitive Ratio: \(\frac{1}{2} \) if \(C_a \gg 1 \). [FKMMP09]
▶ Primal-Dual Approach.
An Optimal Algorithm

Assign impression to an advertiser \(a \): maximizing \(\text{imp. value} - \beta_a \),

- Greedy: \(\beta_a = \text{min. impression assigned to } a \).
- Better (pd-avg): \(\beta_a = \text{average value of top } C_a \text{ impressions assigned to } a \).

\[\begin{align*}
\beta_a &= \frac{1}{C_a} \sum_{j=1}^{C_a} v(j)(1 + \frac{1}{C_a})^{j-1}.
\end{align*} \]

Thm: pd-exp achieves optimal competitive Ratio: \(1 - \frac{1}{e} + \epsilon \) if \(C_a > O(\frac{1}{\epsilon}) \). [Feldman, Korula, M., Muthukrishnan, Pal 2009]
An Optimal Algorithm

Assign impression to an advertiser a: maximizing $(\text{imp. value} - \beta_a)$,

- **Greedy**: $\beta_a = \text{min. impression assigned to } a$.
- **Better (pd-avg)**: $\beta_a = \text{average value of top } C_a \text{ impressions assigned to } a$.
- **Optimal (pd-exp)**: order value of edges assigned to a:

 $\nu(1) \geq \nu(2) \ldots \geq \nu(C_a)$:

 $$\beta_a = \frac{1}{C_a(e - 1)} \sum_{j=1}^{C_a} \nu(j)(1 + \frac{1}{C_a})^{j-1}.$$

Thm: pd-exp achieves optimal competitive Ratio: $1 - \frac{1}{e} + \epsilon$ if $C_a > O(\frac{1}{\epsilon})$. [Feldman, Korula, M., Muthukrishnan, Pal 2009]
An Optimal Algorithm

Assign impression to an advertiser a: maximizing $(\text{imp. value} - \beta_a),$

- **Greedy:** $\beta_a = \text{min. impression assigned to } a.$
- **Better (pd-avg):** $\beta_a = \text{average value of top } C_a \text{ impressions assigned to } a.$
- **Optimal (pd-exp):** order value of edges assigned to a: $v(1) \geq v(2) \ldots \geq v(C_a):$
 \[
 \beta_a = \frac{1}{C_a(e - 1)} \sum_{j=1}^{C_a} v(j)(1 + \frac{1}{C_a})^{j-1}.
 \]

- Thm: pd-exp achieves optimal competitive Ratio: $1 - \frac{1}{e} - \epsilon$ if $C_a > O(\frac{1}{\epsilon}).$ [Feldman, Korula, M., Muthukrishnan, Pal 2009]
Online Generalized Assignment (with free disposal)

- Multiple Knapsack: Item i may have different value (v_{ia}) and different size s_{ia} for different ads a.
- DA: $s_{ia} = 1$, AW: $v_{ia} = s_{ia}$.

\[
\begin{align*}
\text{max} & \quad \sum_{i,a} v_{ia} x_{ia} \\
\sum_{a} x_{ia} & \leq 1 \quad (\forall i) \\
\sum_{i} s_{ia} x_{ia} & \leq C_a \quad (\forall a) \\
x_{ia} & \geq 0 \quad (\forall i, a)
\end{align*}
\]

\[
\begin{align*}
\text{min} & \quad \sum_{a} C_a \beta_a + \sum_{i} z_i \\
s_{ia} \beta_a + z_i & \geq v_{ia} \quad (\forall i, a) \\
\beta_a, z_i & \geq 0 \quad (\forall i, a)
\end{align*}
\]

- Offline Optimization: $1 - \frac{1}{e} - \delta$-aprx [FGMS07, FV08].
- Thm [FKMMP09]: There exists a $1 - \frac{1}{e} - \epsilon$-approximation algorithm if $C_a \max s_{ia} \geq 1$.

\[
\begin{align*}
\text{min} & \quad \sum_{a} C_a \beta_a + \sum_{i} z_i \\
\sum_{a} s_{ia} \beta_a + z_i & \geq v_{ia} \quad (\forall i, a) \\
\beta_a, z_i & \geq 0 \quad (\forall i, a)
\end{align*}
\]
Online Generalized Assignment (with free disposal)

- Multiple Knapsack: Item \(i \) may have different value \((v_{ia})\) and different size \(s_{ia} \) for different ads \(a \).
- DA: \(s_{ia} = 1 \), AW: \(v_{ia} = s_{ia} \).

\[
\begin{align*}
\max & \sum_{i,a} v_{ia} x_{ia} \\
\sum_{a} x_{ia} & \leq 1 \quad (\forall \, i) \\
\sum_{i} s_{ia} x_{ia} & \leq C_a \quad (\forall \, a) \\
x_{ia} & \geq 0 \quad (\forall \, i, a)
\end{align*}
\]

\[
\begin{align*}
\min & \sum_{a} C_a \beta_a + \sum_{i} z_i \\
\beta_a, z_i & \geq 0 \quad (\forall i, a)
\end{align*}
\]

- Offline Optimization: \(1 - \frac{1}{e} - \delta \)-aprx[FGMS07,FV08].
- Thm[FKMMP09]: There exists a \(1 - \frac{1}{e} - \epsilon \)-approximation algorithm if \(\frac{C_a}{\max s_{ia}} \geq \frac{1}{\epsilon} \).
Proof Idea: Primal-Dual Analysis [BJN]

\[
\begin{align*}
\max & \sum_{i,a} v_{ia} x_{ia} \\
\sum_a x_{ia} & \leq 1 \quad (\forall \ i) \\
\sum_i s_{ia} x_{ia} & \leq C_a \quad (\forall \ a) \\
x_{ia} & \geq 0 \quad (\forall \ i, a)
\end{align*}
\]

\[
\begin{align*}
\min & \sum_a C_a \beta_a + \sum_i z_i \\
s_{ia} \beta_a + z_i & \geq v_{ia} \quad (\forall i, a) \\
\beta_a, z_i & \geq 0 \quad (\forall i, a)
\end{align*}
\]
Proof Idea: Primal-Dual Analysis [BJN]

\[
\begin{align*}
\max & \sum_{i,a} v_{ia}x_{ia} \\
\sum_a x_{ia} & \leq 1 \quad (\forall \ i) \\
\sum_i s_{ia}x_{ia} & \leq C_a \quad (\forall \ a) \\
x_{ia} & \geq 0 \quad (\forall \ i, a)
\end{align*}
\]

\[
\begin{align*}
\min & \sum_a C_a\beta_a + \sum_i z_i \\
\sum_i s_{ia}\beta_a + z_i & \geq v_{ia} \quad (\forall \ i, a) \\
\beta_a, z_i & \geq 0 \quad (\forall \ i, a)
\end{align*}
\]

Proof:

1. Start from feasible primal and dual \((x_{ia} = 0, \beta_a = 0, \text{ and } z_i = 0, \text{ i.e., Primal=Dual=0})\).
2. After each assignment, update \(x, \beta, z\) variables and keep primal and dual solutions.
3. Show \(\Delta(\text{Dual}) \leq (1 - \frac{1}{e})\Delta(\text{Primal})\).
Ad Allocation: Problems and Models

<table>
<thead>
<tr>
<th></th>
<th>Online Matching: $v_{ia} = s_{ia} = 1$</th>
<th>Disp. Ads (DA): $s_{ia} = 1$</th>
<th>AdWords (AW): $s_{ia} = v_{ia}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst Case</td>
<td>Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$-aprx</td>
<td>Inapproximable</td>
<td>[MSVV,BJN]: $1 - \frac{1}{e}$-aprx</td>
</tr>
<tr>
<td>Stochastic</td>
<td>[FMMMM09]: 0.67-aprx</td>
<td>[FHKMS10,AWY]: $1 - \epsilon$-aprx, if $\text{OPT} \gg \max v_{ia}$ and $n \gg m$</td>
<td>[DH09]: $1 - \epsilon$-aprx, if $\text{OPT} \gg \max v_{ia}$</td>
</tr>
</tbody>
</table>
Outline: Online Allocation

- Online Stochastic Assignment Problems
 - Online (Stochastic) Matching
 - Online Generalized Assignment (with free disposal)
 - Online Stochastic Packing
 - Experimental Evaluation

- Online Learning and Allocation
Dual-based Algorithms in Practice

- Algorithm:
 - Assign each item i to ad a that maximizes $v_{ia} - \beta_a$.

More practical compared to Primal Algorithms:

- Just keep one number β_a per advertiser.
- Suitable for Distributed Ad Serving Schemes.

Training-based Algorithms

- Compute β_a based on historical/sample data.

Hybrid approach (see also [MNS07]):

- Start with trained β_a (past history), blend in online algorithm.
Dual-based Algorithms in Practice

- Algorithm:
 - Assign each item i to ad a that maximizes $v_{ia} - \beta_a$.

- More practical compared to Primal Algorithms:
 - Just keep one number β_a per advertiser.
 - Suitable for Distributed Ad Serving Schemes.
Dual-based Algorithms in Practice

- **Algorithm:**
 - Assign each item i to ad a that maximizes $v_{ia} - \beta_a$.

- More practical compared to Primal Algorithms:
 - Just keep one number β_a per advertiser.
 - Suitable for Distributed Ad Serving Schemes.

- Training-based Algorithms
 - Compute β_a based on historical/sample data.
Dual-based Algorithms in Practice

- **Algorithm:**
 - Assign each item i to ad a that maximizes $v_{ia} - \beta_a$.

- More practical compared to Primal Algorithms:
 - Just keep one number β_a per advertiser.
 - Suitable for Distributed Ad Serving Schemes.

- Training-based Algorithms
 - Compute β_a based on historical/sample data.

- Hybrid approach (see also [MNS07]):
 - Start with trained β_a (past history), blend in online algorithm.
Experiments: setup

- Real ad impression data from several large publishers
- 200k - 1.5M impressions in simulation period
- 100 - 2600 advertisers
- Edge weights = predicted click probability
- Efficiency: free disposal model
- Algorithms:
 - greedy: maximum marginal value
 - pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
 - dualbase: training-based primal-dual [FKHSV10]
 - hybrid: convex combo of training based, pure online.
 - lp-weight: optimum efficiency
Experimental Evaluation: Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Avg Efficiency%</th>
</tr>
</thead>
<tbody>
<tr>
<td>opt</td>
<td>100</td>
</tr>
<tr>
<td>greedy</td>
<td>69</td>
</tr>
<tr>
<td>pd-avg</td>
<td>77</td>
</tr>
<tr>
<td>pd-exp</td>
<td>82</td>
</tr>
<tr>
<td>dualbase</td>
<td>87</td>
</tr>
<tr>
<td>hybrid</td>
<td>89</td>
</tr>
</tbody>
</table>

- pd-exp & pd-avg outperform greedy by 9% and 14% (with more improvements in *tight* competition.)
- dualbase outperforms pure online algorithms by 6% to 12%.
- Hybrid has a mild improvement of 2% (up to 10%).
- pd-avg performs much better than the theoretical analysis.
Other Metrics: Fairness

- Qualitative definition: advertisers are “treated equally.”
Other Metrics: Fairness

- Qualitative definition: advertisers are “treated equally.”
- Quantitative definition that achieves this:
 - varied and often subjective.
Other Metrics: Fairness

- Qualititative definition: advertisers are “treated equally.”
- Quantitative definition that achieves this:
 - varied and often subjective.

- One suggestion [FHKMS10]: Compute ”fair” solution x^*, measure ℓ_1 distance to x^*.

Sharing policies:
- Equal: all interested advertisers share equally
- Proportional: share $\sim v_{ia}$
- Stable matching: highest v_{ia} gets all. [Thm: eff \geq opt/2]
Other Metrics: Fairness

- Qualitative definition: advertisers are “treated equally.”
- Quantitative definition that achieves this:
 - varied and often subjective.

- One suggestion [FHKMS10]: Compute ”fair” solution x^*, measure ℓ_1 distance to x^*.

- Fair solution:
 - Each a chooses best C_a impressions (highest v_{ia})
 - Repeat:
 - Impressions shared among those who chose them.
 - If some a not receiving C_a imps, a chooses an additional imp.
Other Metrics: Fairness

- Qualitative definition: advertisers are “treated equally.”
- Quantitative definition that achieves this:
 - varied and often subjective.

- One suggestion [FHKMS10]: Compute ”fair” solution x^*, measure ℓ_1 distance to x^*.

- Fair solution:
 - Each a chooses best C_a impressions (highest v_{ia})
 - Repeat:
 - Impressions shared among those who chose them.
 - If some a not receiving C_a imps, a chooses an additional imp.

- Sharing policies:
 - Equal: all interested advertisers share equally
 - Proportional: share $\sim v_{ia}$.
 - Stable matching: highest v_{ia} gets all. [Thm: eff $\geq \frac{\text{OPT}}{2}$]
Experiments: highlights

![Graph showing Efficiency vs. Fairness for different algorithms: lp_weight, fair, greedy, hybrid, dualbase, pd_avg. Each algorithm is represented by a different color, with points distributed across the graph to show performance across advertisers.](image-url)
Experiments: highlights

Graphs showing the relationship between Efficiency and Fairness for different algorithms:
- Greedy
- Hybrid
- Dualbase
- LP weight
- PD-avg
- PD-exp
- Fair

Additionally, a graph showing Efficiency (relative) for Advertisers with different techniques:
- LP-weight
- Fair
- Dualbase
- PD-avg
Online Ad Allocation: Interesting Problems

- Online Stochastic DA:
 - Simultaneous online worst-case & stochastic optimization.
 - Bicriteria fairness, efficiency analysis
 - Tradeoff between delivery penalty and efficiency
 - More complex stochastic modeling (drift, seasonality, etc.)
 - Practical utility of primal algorithms?
Online Ad Allocation: Interesting Problems

- Online Stochastic DA:
 - Simultaneous online worst-case & stochastic optimization.
 - Bicriteria fairness, efficiency analysis
 - Tradeoff between delivery penalty and efficiency
 - More complex stochastic modeling (drift, seasonality, etc.)
 - Practical utility of primal algorithms?

- Online matching:
 - Power of 3 choices?
 - Gap between lower and upper bound ($0.67 < 0.98$).
 - Apply "power of 2 choices" in stochastic optimization.
Results: Three Recent Papers

- **Online Stochastic Matching: Beating $1 - \frac{1}{e}$**, FOCS 2009.
 - online stochastic matching in iid model with known dist.
 - **0.67-approximation** (idea: power of two choices)
 - Feldman, Mehta, M., Muthukrishnan

- **Online Stochastic Packing applied to Display Ad Allocation**, ESA 2010.
 - Online stoch. packing in random order model: online routing.
 - $1 - \epsilon$-approximation under assumptions (idea: learn dual variables.)
 - Feldman, Henzinger, Korula, M., Stein

- **Online Ad Assignment with Free Disposal**, WINE 2009.
 - online generalized assignment problems with free disposal.
 - $1 - \frac{1}{e}$-competitive algorithm (idea: primal-dual analysis.)
 - Feldman, Korula, M., Muthukrishnan, Pal
Results: Three Recent Papers

- **Online Stochastic Matching: Beating $1 - \frac{1}{e}$, FOCS 2009.**
 - Online stochastic matching in iid model with known dist.
 - 0.67-approximation (idea: power of two choices)
 - Feldman, Mehta, M., Muthukrishnan

- **Online Stochastic Packing applied to Display Ad Allocation, ESA 2010.**
 - Online stoch. packing in random order model: online routing.
 - $1 - \epsilon$-approximation under assumptions (idea: learn dual variables.)
 - Feldman, Henzinger, Korula, M., Stein
Results: Three Recent Papers

- **Online Stochastic Matching**: Beating $1 - \frac{1}{e}$, FOCS 2009.
 - online stochastic matching in iid model with known dist.
 - 0.67-approximation (idea: power of two choices)
 - Feldman, Mehta, M., Muthukrishnan

- **Online Stochastic Packing** applied to Display Ad Allocation, ESA 2010.
 - Online stoch. packing in random order model: online routing.
 - $1 - \epsilon$-approximation under assumptions (idea: learn dual variables.)
 - Feldman, Henzinger, Korula, M., Stein

- **Online Ad Assignment with Free Disposal**, WINE 2009.
 - online generalized assignment problems with free disposal.
 - $1 - \frac{1}{e}$-competitive algorithm (idea: primal-dual analysis.)
 - Feldman, Korula, M., Muthukrishnan, Pal
Outline: Online Allocation

- Online Stochastic Assignment Problems
 - Online (Stochastic) Matching
 - Online Generalized Assignment (with free disposal)
 - Online Stochastic Packing
 - Experimental Results

- Online Learning and Allocation
Display Ad Delivery

Planning:
Offline, Online
Strategic, Stochastic

Forecasting
Supply of impressions
Demand for ads

Ad Serving:
Targeting:
CTR

Allocation:
Online, Stochastic

Delivery Constraints, Budget
Display Ad Delivery

Planning:
- Offline, Online
- Strategic, Stochastic

Ad Serving:

Targeting:

Allocation:
- Online, Stochastic

Forecasting:
- Supply of impressions
- Demand for ads

Delivery Constraints, Budget

CTR

Feedback
Online Learning & Allocation

- Value: Estimated Click-Through-Rate (CTR).
Online Learning & Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
Online Learning & Allocation

- Value: **Estimated Click-Through-Rate (CTR)**.
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
Online Learning & Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
- Budgeted Unknown-CTR Multi-armed Bandit
 - Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
 - Upon arrival of query of type i, assign it to an ad a maximizing
 \[P_{ia} = (\hat{c}_{ia} + \sqrt{\frac{2\ln n_i}{n_{ia}}})b_{ia} \]
 where \hat{c}_{ia} is the current estimate of CTR, n_{ia} is the number of times i has been assigned to a, n_i is the number of queries of type i so far.

Thm\[PO07\]: ALG \geq opt $2 - O(\ln n)$ where n is the number of arrivals.
Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.

- Algorithm: Revised Greedy
 - Upon arrival of query of type \(i \), assign it to an ad \(a \) maximizing
 \[
 P_{ia} = (\hat{c}_{ia} + \sqrt{\frac{2\ln n_i}{n_{ia}}})b_{ia}
 \]
 where \(\hat{c}_{ia} \) is the current estimate of CTR, \(n_{ia} \) is the number of times \(i \) has been assigned to \(a \), \(n_i \) is the number of queries of type \(i \) so far.

- Thm[PO07]: \(\text{ALG} \geq \frac{\text{OPT}}{2} - O(\ln n) \) where \(n \) is the number of arrivals.
Outline of this talk

- Ad serving in repeated auction settings
 - General architecture.
 - Allocation for budget constrained advertisers.

- Ad delivery for contract based settings
 - Planning
 - Ad Serving

- Other interactions
 - Learning + allocation
 - Learning + auction
 - Auction + contracts
Three main theory/practice problems
Outline

Learning + Alloc

Hybrid ad serving
Online Learning & Allocation

- Value: Estimated Click-Through-Rate (CTR).
Online Learning & Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
- Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
- Budgeted Unknown-CTR Multi-armed Bandit
 - Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
Online Learning & Allocation

- **Value:** Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
- Budgeted Unknown-CTR Multi-armed Bandit
- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
Online Learning & Allocation

- Value: Estimated Click-Through-Rate (CTR).
- Combined online capacity planning & learning?
 - Budgeted Active Learning
 - Bayesian Budgeted Multi-armed Bandits:
 - Guha, Munagala, Multi-armed Bandits with Metric Switching Costs.
 - Goel, Khanna, Null, The Ratio Index for Budgeted Learning, with Applications.
 - Guha, Munagala, Pal, Multi-armed Bandit with Delayed Feedback.
 - Budgeted Unknown-CTR Multi-armed Bandit
 - Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
 - Upon arrival of query of type i, assign it to an ad a maximizing
 \[
 P_{ia} = (\hat{c}_{ia} + \sqrt{\frac{2\ln n_i}{n_{ia}}})b_{ia}
 \]
 where \hat{c}_{ia} is the current estimate of CTR, n_{ia} is the number of times i has been assigned to a, n_i is the number of queries of type i so far.
Online CTR Learning: Mixed Explore/Exploit

- Pandey, Olston 2007, Handling Advertisement of Unknown Quality.
- Algorithm: Revised Greedy
 - Upon arrival of query of type i, assign it to an ad a maximizing
 \[P_{ia} = (\hat{c}_{ia} + \sqrt{\frac{2 \ln n_i}{n_{ia}}})b_{ia} \]
 where \hat{c}_{ia} is the current estimate of CTR, n_{ia} is the number of times i has been assigned to a, n_i is the number of queries of type i so far.
- Thm[PO07]: $\text{ALG} \geq \frac{\text{OPT}}{2} - O(\ln n)$ where n is the number of arrivals.
Online Learning & Auction Incentives

[Devanur,Kakade’09, Babaioff,Sharma,Slivkins’09]

▶ Multi-Armed Bandit algorithms achieve an “implicit” exploration-exploitation tradeoff to get a regret of $O(\sqrt{T})$ (e.g., UCB).

▶ Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).

▶ A naive explore-exploit method gets $O(T^{2/3})$ regret:

- Explore ads for the first phase, giving them out for free.
- Fix the CTRs thus learned in the first phase.
- Run 2nd price auction for the 2nd phase.

▶ Can you do better than this simple decoupling?

▶ No!

Theorem [DK09,BSS09] For every truthful auction (under certain assumptions), there exist bids, ctrs, s.t. regret = $\Omega(T^{2/3})$.
Online Learning & Auction Incentives

[Devanur,Kakade'09, Babaioff,Sharma,Slivkins'09]

▶ Multi-Armed Bandit algorithms achieve an “implicit” exploration-exploitation tradeoff to get a regret of $O(\sqrt{T})$ (e.g., UCB).
▶ Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).
▶ A naive explore-exploit method gets $O(T^{2/3})$ regret:
 ▶ Explore ads for the first phase, giving them out for free.
 ▶ Fix the CTRs thus learned in the first phase.
 ▶ Run 2nd price auction for the 2nd phase.

▶ Theorem [DK09,BSS09] For every truthful auction (under certain assumptions), there exist bids, ctrs, s.t. regret = $\Omega(T^{2/3})$.

Online Learning & Auction Incentives

[Devanur,Kakade’09, Babaioff,Sharma,Slivkins’09]

- Multi-Armed Bandit algorithms achieve an “implicit” exploration-exploitation tradeoff to get a regret of $O(\sqrt{T})$ (e.g., UCB).
- Can these be run in tandem with truthful auctions? (e.g., 2nd price for a single slot).
- A naive explore-exploit method gets $O(T^{2/3})$ regret:
 - Explore ads for the first phase, giving them out for free.
 - Fix the CTRs thus learned in the first phase.
 - Run 2nd price auction for the 2nd phase.
- Can you do better that this simple decoupling?
- No!

Theorem

[DK09,BSS09] For every truthful auction (under certain assumptions), there exist bids, ctrs, s.t. regret $= \Omega(T^{2/3})$.
Outline

Learning + Alloc

Hybrid ad serving
Hybrid ad serving: Contracts + Spot Auctions

Given a page view, and two types of advertisers:

- Contract-based.
- Auction-based.
Hybrid ad serving: Contracts + Spot Auctions

Given a page view, and two types of advertisers:

- Contract-based.
- Auction-based.

- Decide who wins and how much do they pay.

Requirements:

- For each contract-advertiser, meet its demand.
- Implement the scheme using proxy-bidding for contract-advertisers in the spot auction.
Hybrid ad serving: Contracts + Spot Auctions

- **Naive solution**: If a contract-adv is eligible and has not finished demand, then let it win the spot. **Bid infinity for all auctions.**
Hybrid ad serving: Contracts + Spot Auctions

- **Naive solution:** If a contract-adv is eligible and has not finished demand, then let it win the spot. *Bid infinity for all auctions.*

- **Optimize for revenue:** If the auction pressure (price) is low then let the contract-adv win. *Bid a low bid for all auctions.*
Hybrid ad serving: Contracts + Spot Auctions

- **Naive solution**: If a contract-adv is eligible and has not finished demand, then let it win the spot. *Bid infinity for all auctions.*

- **Optimize for revenue**: If the auction pressure (price) is low then let the contract-adv win. *Bid a low bid for all auctions.*
 - Unfair to contract-adv, since low auction-price \Rightarrow it is a lower value impression.
Hybrid ad serving: Contracts + Spot Auctions

- **Naive solution:** If a contract-adv is eligible and has not finished demand, then let it win the spot. *Bid infinity for all auctions.*

- **Optimize for revenue:** If the auction pressure (price) is low then let the contract-adv win. *Bid a low bid for all auctions.*
 - Unfair to contract-adv, since low auction-price \Rightarrow it is a lower value impression.

- **Ideally:**
 - Provide contract-adv with a **representative allocation**, an equal slice of impressions from each price-point.
 - A **price-oblivious** scheme, i.e., bid without seeing the auction bids.
 - Revenue per auction: average auction-price of impressions given away to contract-advertisers is at most some target t.
Obtaining representative allocations

Two main ideas:

1. Can implement any decreasing function \(a(p) \) for fraction of impressions of auction-price \(p \).
Obtaining representative allocations

Two main ideas:

1. Can implement any decreasing function $a(p)$ for fraction of impressions of auction-price p.

2. Solve the system for well chosen distance functions:

$$\text{Minimize } \text{dist}(U, a)$$

$$\text{subject to: } \int_p a(p)f(p)dp = d$$

$$\int_p pa(p)f(p)dp \leq td$$
Display Ad Delivery

Open Problems:
- Optimal combined online allocation & learning.
- Feature selection and correlation in learning CTR.
Open Problems:

- Optimal combined online allocation & learning.
- Feature selection and correlation in learning CTR.
- Optimal combined stochastic planning and serving?
Thank You