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1 Social Network Advertising

Social network sites (SNS) such as Facebook, Google+ and Twitter have at-
tracted hundres of millions of users daily since their appearance [1]. In modern
social networks (SNS), users expose many personal behaviors and connect to
each other based on real world relationships, both of which makes SNS ideal
for target advertising [2, 3]. Advertisers bid a target user group satisfying a set
of criterias matching advertising objective and publish their product advertise-
ments within social networks via advertisement agents (e.g. Facebook, Google+,
Twitter), who allocate each advertisement (Ad) to users impressions (i.e. when
user is reading a page) and charge certain prices, often based on number of clicks,
impressions or engagements. In social network advertising, the cost-per-mille
model is often used, where the advertisement agents receive the commission for
one thousand user impressions displaying the Ad. The Ad allocation problem is
a central problem for advertisement agents: how to maximize its revenue while
respecting advertisers bids and budgets constraints.

The advertising mechanism used by online advertisement agents, including
social network websites, is essentially large auctions where advertisers place
bids on user impressions, and specify their daily or total budget [4]. What
makes social network advertising different from other Internet advertising is
it is able to diffuse the advertisement and reach potentially larger audience
through users’ engagements (e.g. ‘like’ in Facebook, ‘reteeet’ in Twitter, ‘+1’ in
Google+). Previous research is mainly focusing on search engine settings, where
the matching is ad-hoc and associated with search queries. Let the advertisers
be A, each advertiser ai ∈ A has a budget Bi, and let the queries be Q and each
qj ∈ Q can only be placed to one ad. Given the bidding matrix b, bij denoting
how much money advertiser ai willing to pay for query keyword qj, the offline
ad allocation problem in this setting is choose the allocation M to maximize the
revenue of Ad agent:
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max
M

|A|∑
i

|Q|∑
j

bijMij

subject to

|A|∑
i

Mij ≤ 1 ∀aj ∈ A∑
Ai∈A

Iu,i ≤ Iu ∀u ∈ U

The Ad allocation problem is search engine setting is often discussed under
online setting and has been formulated as a online bipartite matching problem,
and several algorithms have been used in practice [4] as we learnt in the class.

In the SNS setting, each advertiser bids for a target group of users instead
of keywords. Social network advertising platform often provides a set of cate-
gorical fitlers to let the advertiser narrow down the target users, such as gender,
age, education, country, and even interests. For instance, to promote a depart-
ment board game night event, the organizer may want to target on ‘CS graduate
students who lives in College Park and are interested in board games’. Note
that, comparing with seach query based advertisement, the impression of the
user is by no means of a unit value and is no longer ad-hoc. The user shown an
advertisement can engage with the it (e.g. ‘like’ in Facebook, ‘+1’ in Google+,
and ‘retweet’ in Twitter), her friends in the ego-network can see the Ad and
potentially engage with it as well. The advertiser often needs to pay for all the
impressions including the diffused ones. Without considering the cascading ef-
fect properly in the optimization, the agent can exceed advertisers’ budget easily
and waste valuable user impressions. The paid influence in social networking
adversing distinguish it from influence maximization problems, where one want
to choose and pay for a seed set of users in order to reach the maximum audi-
ence. Furthermore, the advertising agent (i.e. SNS provider) often defines and
considers more sophisticated domain rules of the allocation for advertisers. For
example, there may be a constraint on fairness (i.e. users allocated to differ-
ent advertisers have similar influence ability), or asking higher price for more
influential users.

Let’s use A to denote the set of advertisers, and U be the set of users. Each
user u ∈ U has a daily impression Iu and social influence function P(u), each
advertiser Ai ∈ A has a budget Bi and bidding price pi over her target user
groups xi ⊆ U. Let T be the targeting constraint between advertisers and
the users. The optimization of the SNS Ads allocation problem is to allocate
impressions of users to their bid campaigns to maximize the ad agent’s total
revenue, which is a typical resource allocation problem, and can be formulated

2



as the following integer programming problem.

max
I={Iu,i}

∑
Ai∈A

pi
∑
u∈xi

Iu,i(1+ P(u))

subject to pi
∑
u∈xi

Iu,i(1+ P(u)) ≤ Bi ∀Ai ∈ A∑
Ai∈A

Iu,i ≤ Iu ∀u ∈ U

Iu,i

Iu
≤ Tu,i ∀Ai ∈ A,u ∈ U

2 Hyperbolic Geometry and Complex Networks

Hyperbolic space, a geometric space that generalizes the idea of Riemannian
manifolds with negative curvature, has raised more and more attention due to
its application in network modeling and analysis [5, 6, 7, 9, 8]. Basic properties of
the hyperbolic space include negative curvature, infinite number of parallel lines,
thin triangles and the smoothness of the space [10]. There are several hyperbolic
models, such as halfplane model and Poincaré disk model. The Poincaré disk
model is widely used as it has nice expressions on Euclidean space:

d(x, y) = arccosh

(
1+

2 ‖x− y‖2

1− ‖x‖2)(1− ‖y‖2)

)
where ‖.‖2 is the 2-norm (i.e. Euclidean distance), d(x, y) is hyperbolic distance.
In Fig. 1, we show the hyperbolic lines and triangles on a Poincaré disk. An
introductory characterization of the more common hyperbolic geometry models
and their elementary geometric objects can be found in [10].

(a) Lines (b) Triangles

Figure 1: Examples of Basic Gemotry shapes on a Poincaré disk

In recent years, hyperbolic geometry has been found connection with prob-
lems on graphs. Among the related work, there are two major branches in
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applying the Hyperbolic geometry to complex networks [11]. One is proposed
by R. Kleinburg [5] for geometric routing, which first finds a minimum spanning
tree from the graph then maps the spanning tree into the hyperbolic space.
The other one is proposed by Krioukov et al. [9] where they use hyperbolic
embedding to describe the topology and characteristics of complex networks.

In the work of Krioukov et al. [8, 9], on a 2D Poincaré model, the network
can be generated onto a disk in 2-dimensional hyperbolic space H2, with each
node assigned a virtual coordinate (θ, r). The hyperbolic distance between s
and t under polar coordinates is:

d(s, t) =
1

2
arccosh(cosh 2rs cosh 2rt−sinh 2rs sinh 2rt cos θst) ≈ rs+rt+

ln(θst)
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where θst = π − |π − |θs − θt||. They show a random graph generation model
based on the Poincaré disc is able to capture most important features of complex
networks, such as small world effect, power-law degree distribution (scale-free
effect) and community structure, which outperforms previous models such as
Poisson Random Graph model (Erdos-Renyi model) and Exponential Random
Graph models that is not able to address the clustering properties often seen in
complex networks. Interestingly, the negative curvature and metric property of
the underlying hyperbolic geometry can reflect the heterogeneous degree distri-
bution and strong clustering in complex networks very naturally. Conversely,
they show a network would have an effective hyperbolic geometry underneath, if
the network has some metric structure and degree distribution is heterogeneous
within the network. Their method is able to accommodate complex networks of
arbitrary size, with radius R = 1 corresponding to infinity in Euclidean space.
By utilizing the relation between hyperbolic geometry and properties of com-
plex networks, they further design a mapping scheme between hyperbolic space
geometric framework and statistical mechanics of complex networks, which in-
terprets edges in a network as non-interacting fermions whose energies are hy-
perbolic distances between nodes, while the auxiliary fields coupled to edges are
linear functions of these energies or distances.

The random graph generation model is refered as Popularity × Similarity
Optimization (PSO) model. Let the negative curvature of the hyperbolic space
be −1, the model takes parameter m representing the average number of ex-
isting nodes, β for the powerlaw skewness γ = 1 + 1/β, and a temperature
paremter T that controls the average clustering in the network. The random
graph generation method adds one node at a time. At time i, it works as follows:

1. At time ti, node i is added to (θi, ri), where ri = 2 ln i, θi ∼ Unif [0, 2π]

2. Each j < i moves inside, rj = βrj + (1− β)ri

3. Create edge between each (i, j) with probability pij = pd(i,j) = 1/(1 +

e
d(i,j)−Ri

2T ), where d(i, j) is the hyperbolic distance, Ri = ri − 2 ln 2T
sin Tπ

Ii
m

4. Select a random pair of disconnected nodes k, l < i, and connect them

with probability pkl = 1/(1+ e
d(k,l)−Ri

2T )
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With the scheme, the node density along radius is expotential, and uniform on
the angulus coordinate, and degree distribution is expotential along radius.

ρ(θ) =
1

2π
, ρ(r) =

sinh r

coshR− 1
≈ er−R ∼ er

Notice that the hyperbolic distance plays role in the angular coordinate assign-
ment, the smaller the distance then the higher probability they will form a edge,
that is how the model can reflect the clustering property in complex networks.

In their later work [8, 6], Papadopoulos et al. gives an embedding algorithm
to map real complex networks onto hyperbolic space. The method utilizes their
hyperbolic space random graph generation PSO model, and places each node of
the graph one by one in the desceding order of its degree. When placing a node,
it replays the geometric growth and uses a maximimum likelhood estimation for
parameters to fit the real graph, and estimate the hyperbolic coordiantes (θ, r)
of the current to be placed node. The embedding algorithm sorted the nodes in
the network in a descending order, first node is assigned r1 = 0, θ1 ∼ Unif [0, 2π],
and each following step for node i works as follows:

1. assign i, ri = 2 ln i

2. update j < i, rj = βrj + (1− β)ri

3. find θi by maximzie the local likelihood

They demonstrate an application of real network embedding and apply it to
link prediction problems effectively to show the advantage of this scheme.
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