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Recently, the dynamic processes for the diffusion of influence has attracted significant interest from

algorithmic researchers. Over the past ten years, the following viral marketing problem has attracted a

significant amount of interest. Assume we want to promote a new product over a given social network

and wish this product will be adopted by most people in this network. We can initialize the diffusion

process by “targeting” some influential people. Then, a cascade will be caused by these initial adopters

and other people start to adopt this product due to the influence they receive from earlier adopters. But

how should we select these influential people who are targeted initially? Domingos and Richardson [2001]

studied the problem in a probabilistic setting, and provided heuristic solutions. Kempe et al. [2003] were

the first ones to model this problem as an optimization problem by using the threshold model proposed

by Granovetter [1973], showed it is NP-hard to find the optimal initial set, and developed approximation

algorithms for the problem. Subsequently, several different variants of this problem have been studied.

Since then, several variants of this problem are studied. Among them, Chen [2009] presented the Target Set

Selection (TSS) problem. Built on the TSS problem, Raghavan and Zhang [2013] proposed the Weighted

Target Set Selection (WTSS) problem and Gunnec et al. [2013] studied the Least Cost Influence Problem

(LCIP).

The WTSS problem is defined on a connected undirected graph G = (V,E). The node set V can be

interpreted as a set of people in a social network then the edge set E becomes the connections between

people on the social network. For each i ∈ V , there is a threshold, denoted by gi, which is between 1

and α(i), where α(i) denotes the degree of node i. Let gi and bi be the threshold value and the weight for

node i ∈ V respectively. The weight models the fact that different nodes require differing levels of effort to

become initial adopters (in practice, it is reasonable to assume different persons would not always require

the same amount of effort to be convinced). Initially we assume all nodes are inactive. We select a subset
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of nodes A ⊆ V , namely the target set, and for each node i ∈ A, the threshold value bi is incurred so that

i becomes active. After the target set becomes active, in each step, we update the state of the remaining

nodes by the following rule: an inactive node i becomes active if at least gi of its neighbors were active

in the previous step. The goal is to find the target set A∗ while ensuring that all nodes are active at the

end that minimizes the total cost incurred, i.e.
∑

i∈A∗ bi. We present a Mixed Integer Programming (MIP)

formulation for WTSS.

xi is 1 if node i is selected in target set. 0 o.w. yij is 1 if node i becomes active before node j. 0 o.w.

WTSS(G): Minimize
∑
i∈V

bixi

Subject To
∑
j∈α(i)

yji + gixi ≥ gi ∀i ∈ V (1)

∑
(i,j)∈C

yij ≤ |C| − 1 for each cycle C ∈ G (2)

xi ∈ {0, 1} ∀i ∈ V (3)

yij , yji ∈ {0, 1} ∀(i, j) ∈ E (4)

The objective function calculates the total threshold value of the target set. By constraints (1), all nodes

are eventually active. Constraints (3) ensure that for a given cycle C, one node in the cycle has to be active

before the others, otherwise, it would be possible to activate nodes in a circular fashion without one node

becoming active before the next node in the cycle. Constraints (3) and (4) are domain constraints.

Figure 1 is an example of the WTSS problem. In the left, it is a WTSS instance. It has three persons in

this network. The numbers beside a node are its weight and threshold. For instance, the weight of node 1

is 40 and its threshold is 2. In the right, it is the optimal solution for this instance. We pick node 2 and pay

its weight, 40. Then, node 3 becomes adopted. After that, node 1 adopts as well. So, the whole network
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adopts.

The Least Cost Influence Problem (LCIP) is defined on an undirected graph G = (V,E). Each node

in the network makes a decision about buying a product. An individual buys the product if the utility from

the product exceeds a certain threshold for that individual. Such threshold is named as hurdle in marketing

literature. Utility from the product is calculated as the sum of the utilities from different attributes of the

product and represented by bi for node i ∈ V . We introduce two more attribute-like measures to be added

to the total utility from the product. The first is the inducement received from the seller. Inducements are

considered as endorsements for the individual to buy the product, and counted in terms of additional positive

units of utility. They correspond to promotions received from sellers as free samples, discount coupons, etc.

We denote the inducement received by pi, i ∈ V . The second is the additional utility from using the

same product as one’s neighbors. The additional utility is dependent on the person influencing (owning the

product) and the person being influenced (making a decision about whether to buy the product). We denote

this influence factor by di which captures how much a neighbor of i influences node i if the neighbor has

already adopted the product. di is defined over all nodes i ∈ V .

The objective of LCIP is to minimize the total amount of incentives given while ensuring that all of the

market will adopt the product at the end. We present an MIP formulation for LCIP.

In order to take into account social network effects, and to capture the order of buying among customers,

we introduce time periods, t = 1, 2, . . . , T on when the product is bought by an individual. We do not allow

for churns and once a product is adopted, it is kept the entire time. So the critical part (in terms of affecting

neighbor’s decisions) is when it is the first time to buy the product which we denote by vit and equals 1 if

node i adopts at time period t, and 0 otherwise. We also introduce an auxiliary binary decision variable yit

taking the value 1 if node i has adopted the product by time period t, 0 otherwise.
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LCIP(G): Minimize
∑
i∈V

pi

Subject to pi +
∑
j∈α(i)

diyj,(t−1) ≥ biyit i ∈ V, t = 2, ..., T (5)

yit − yi,(t−1) = vit i ∈ V, t = 2, ..., T (6)

T∑
t=1

vit = x1 i ∈ V (7)

pi ≥ 0 i ∈ V (8)

yit ∈ {0, 1}, vit ≥ 0 i ∈ V, t = 1, 2, . . . , T (9)

The objective function calculates the sum of the incentives given over the network. Constraints (5)

provide the buying condition for each person. The hurdle, bi, for person i is compared with the sum of the

total influence over all neighbors,
∑

j∈α(i) diyj,(t−1), and the amount of incentives received, pi. Here, we

note that the utility a person gets from using the product (without any influence from neighbors or incentives

from the seller) has already been deducted and omitted from the model. Ignoring the utility solely from using

the product in this model does not change the solution of which nodes to select to give incentives to or the

amount of incentives to give. Using network effects and inducements, our focus is on finding the least

expensive way of closing the gap between a person’s hurdle and the utility from the product. Therefore, the

hurdles in this model are current (or updated) hurdles (which are therefore less than the general definition of

hurdle in the marketing literature). With constraints (6), we set the value of vit w.r.t. to the first time node

i adopts the product. Adopters do not switch to not adopting at later points of time. By summing over all

periods in constraints (7), we make sure that all nodes eventually adopt the product. Note that since there

are |V | nodes, the number of time indices required can be limited to T ≤ |V |.

Figure 2 is an example of the LCIP. In the left, it is a LCIP instance. It has three persons in this network.
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The numbers beside a node are its weight and influence factor. For instance, the weight of node 1 is 40 and

its influence factor is 20. In the right, it is the optimal solution for this instance. We pay node 2 and node 3.

After we pay node 3, it reduces node 1 and node 2’s hurdle to 20. Then, we pay node 2. After it adopts, the

node 1 adopts as well. The total cost is 30. The difference between the LCIP and the WTSS problem is that

we are allow to hand out partial incentive in the LCIP. We can understand it as coupons or discounted price.

But in the WTSS, you have to pay the full amount of weight to a node. In other words, the WTSS problem

is the binary version and the LCIP is the fractional one.

Although these two models are considered in viral marketing setting, they can also be applied in in

Epidemiological setting, see Gunnec et al. [2013]. We have a social network where each person has a risk

to be affected by a kind of disease. For a person i, let ri be the safe risk level for it. Suppose that eji denotes

the risk factors of an untreated neighbor j on node i (e.g., if δji denotes the probability of node i getting

infected by an untreated neighbor j, then eji = − log(1 − δji)). Let fi denote the reduction of the risk on

node i if one of its neighbor j is treated so that its risk level is less than or equal to a threshold risk level rj .

We would like to ensure that the sum of all eji − fi for node i minus the intervention or treatment strategy

zi reduces the overall risk of node i below the threshold risk level ri. This may be equivalently modeled by

the LCIP in the marketing setting with bi =
∑

j∈N(i) eji − ri and di = fi, with a discrete set intervention

or treatment strategy choices at each node (e.g. zi = pi).

There is a key difference between the marketing setting and the Epidemiological one. In the marketing

setting, there is a centralizer (a company) who want to promote a new product. Hence, they are willing to

pay the extra incentives to each potential customer. The cost can be considered as a marketing campaign

cost. In the Epidemiological setting, each person wants to reduce his/her risk level. Then, the cost is afforded

by the person who receives the treatment. However, there are many free riders. For instance, in Figure 1,

person 1 and person 3 are free riders in the small example because they have not received any treatment but

their risk level are reduced due the fact that only person 2 receives treatment. In the small example, the cost

is 40. Hence, naturally, this leads to the question that how should we allocate the cost? Is it fair that only

person 2 pays the cost?

To answer above questions, we combine cooperation game theory with these two combinatorial opti-

mization problems. Cooperative game theory is concerned with situations in which at least two decision

makers can increase their profits or decrease their cost by cooperation. To be concrete, we can think of a

case where one person has the resources to make a certain product, another one has the know-how to make
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it, and yet a third one has the means to transport it to a market where it can be sold. Alone, none of them

can generate a profit. By working together they can. A major part of the cooperative games theory is built

about the question about how to allocate the total profit or costs among the group of decision makers who

are willing to cooperate. Among others, combinatorial optimization games form an important subclass of

cooperative games, see Nisan [2007]. We would like to ask these questions: How can we apply cooperation

game theory to our model in the Epidemiological setting? Can it be tested in polynomial time whether a

given instance of the game has a nonempty core? Is it possible to find an imputation in the core in polyno-

mial time? Furthermore, we would like to explore the possibility that allocating the cost by other solution

concepts such as Shapley value.
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