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I The dynamic processes for
the diffusion of influence
has attracted significant
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The following viral marketing
problem:

I Promote a new product
and wish most people will
adopt it.

I Initialize the diffusion
process by “targeting”
some influential people.

I A cascade will be caused
and other people start to
adopt.

I How should we select
these influential people
who are targeted initially?
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I Domingos and Richardson [2] studied the problem in a
probabilistic setting, and provided heuristic solutions.

I Kempe et al. [6] were the first ones to model this problem
as an optimization problem by using the threshold model
proposed by Granovetter [3].

I It is NP-hard to find the optimal initial set.
I Since then, several different variants of this problem have

been studied.
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Chen [1] proposed the Target Set Selection (TSS) problem:
I Given a connected undirected graph G = (V,E). For each

i ∈ V, there is a threshold, gi, which is between 1 and
degree(i). All nodes are inactive initially.

I Select a subset of nodes, the target set, and they become
active.

I After that, in each step, an inactive node i becomes active if
at least gi of its neighbors are active in the previous step.

I The goal: find the minimum target set while ensuring that
all nodes are active by the end of this activation process.

I The problem is APX-hard.
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In this paper, we consider two combinatorial optimization
problems built on the TSS problem:

I The weighted TSS (WTSS) problem (Raghavan and Zhang
[7] ): For each node i ∈ V, there is a weight, denoted by bi,
which models the fact that different nodes require differing
levels of effort to become initial adopters.

I The Least Cost Influence Problem (LCIP) (Gunnec et al.
[5]): For each node i ∈ V, there is a influence factor di
denoting how much node j influences node i if node j
adopts. So, gi = d bi

di
e. An extra incentive pi could be given

to node i to encourage it to adopt the product.
I The goal: find the minimum cost while ensuring that all

nodes adopt the product.
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An application in Epidemiological setting (Gunnec and
Raghavan [4] ):

I Suppose that eji denotes the risk factors of an untreated
neighbor j on node i (e.g., if δji denotes the probability of
node i getting infected by an untreated neighbor j, then
eji = − log(1− δji)).

I Let fi denote the reduction of the risk on node i if one of its
neighbor j is treated so that its risk level is less than or
equal to a threshold risk level rj.

I We would like to ensure that the sum of all eji − fi for node
i minus the intervention or treatment strategy zi reduces
the overall risk of node i below the threshold risk level ri.

I This may be equivalently set in the marketing setting with
bi =

∑
j∈N(i) eji − ri and di = fi ,with a discrete set

intervention or treatment strategy choices at each node
(zi = pi).
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AN ILLUSTRATION:

Data for each node:
1. b1 = 40, d1 = 20.
2. b2 = 40, d2 = 20.
3. b3 = 10, d3 = 20.

If we treat person 2.
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Now, Person 3 is safe.

Then, Person 3 decreases
Person 1’s risk, and Person 1 is
safe.

The total cost is 40.
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I There are many free riders. (Person 1 and 2.)

I How to allocate the treatment cost? (40)
I We would like to propose the cooperation games version

of these models and find a good way to allocate the cost.
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