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1 Introduction

Data clustering considers the problem of grouping data into clusters based on
its similarity measure. It is one of the central problems for data analysis, with a
wide applications to a variety of areas such as marketing research, data mining
and social behavior analysis.Real world objects can be modeled as points in a
high dimensional metric. So clustering these real world data is corresponded to
assign each point to a cluster label.

A classic approach to clustering is called K-means algorithm which randomly
selects k initial cluster centers and iteratively assigns each data point and up-
dates the cluster centers. A lot of approaches like K-means algorithm considers
the pairwise distance as a similarity measurement. In that case, the cluster-
ing result is produced by optimizing an objective function which maximizes
the distances between pairs of points from different clusters and simultaneously
minimizes the distances between pairs of points from the same clusters. Fig.1
shows an example of clustering points into 3 clusters based on their pairwise
similarity measure.

Figure 1: An example of clustering data points into 3 clusters which are anno-
tated using 3 different colors

However, pairwise distances are not enough to measure more complex data
relations. For example, if points are called similar when they belong to the
same straight line. Since every pair of points can determine a straight line going
through them exactly, a higher order similarity measure has to be defined for
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Figure 2: An example of line clustering: (a) original data; (b) a possible clul-
stering result using pairwise distances (c) an ideal line clustering result based
on the collinearity measure of more than 2 points

this situation. In this case, more than 2 points needs to be evaluated together.
In fig.2, we show an example of the line clustering problem.

1.1 Hypergraph Representation

In order to represent the high order data similarity, we introduce the concept
of hypergraph. Hypergraph is a generalization of traditional graph in that each
edge can contains more than 2 vertices.

Definition 1.1 (Hypergraph). A hypergraph H is a pair H = (V,E) where V
is a set of elements called nodes or vertices, and E is a set of non-empty subsets
of V called hyperedges or edges.

Definition 1.2 (Weighted Hypergraph). A weighted hypergraph H(V,E, ω) is
a hypergraph where each hyperedge is associated with a weight defined by ω.

Definition 1.3 (Weighted k-graph). A weighted k-graph (aka k-uniform hy-
pergraph) H(V,E, ω) is a weighted hypergraph such that all its hyperedges have
size k.

The higher order data similarity can be represented by a weighted hyper-
graph. Therefore, the general clustering problem is reduced to a hypergraph
clustering problem:

Given a k-graphH(V,E, ω) where for each vertex combinations (v1, v2, . . . , vk) ∈
V , their similarity (the possibility that they come from the same cluster) is de-
fined by ω(v1, v2, . . . , vk) ∈ [0, 1]. The Hypergraph Clustering problem is to
cluster the vertices from V into multiple clusters {C1, C2, . . .} (the total num-
ber of clusters is unknown) such that

1. each vertex belongs to one and only one cluster;

2. vertices from the same cluster have higher similarities;

3. vertices from different clusters have lower similarities.

One of the main problem of clustering is to define an objective function for
globally measuring the ”higher” and ”lower” terms. A popular way to do that
is to sum up all of the weights within a cluster and try to minimize the weight
sums for all clusters.
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Generally, there are two main streams of relating the cllustering problem to
game theory concepts. One is by modeling the problem as population games
and looking for the evolutionary stable states [1, 5]. The other is by modeling
the problem as a coalition game and analyzing its solution space using game
theory approaches [3, 2].

1.2 Clustering based on evolutionary game theory

One of the main approaches is based on evolutionary game theory. The clus-
tering problem is modeled using replicator dynamics concept which is inspired
by Darwinian evolution theory. As fig.3 shows, the original data is represented
using a hypergraph. Each hyperedge is associated with a weight. If we consider
each point as a population of people. The population is uniformly in the begin-
ning (represented by the circle area in fig.3a). A large weight for each hyperedge
means these corresponding peoples are easier to exist together. Similarly, a small
weight generally means these peoples are fairly difficult to live together in which
case the peoples are conflicting and competing with each other. There has to
be one side of the peoples getting less and less population, e.g. fig.3c.

(a)

(b)

(c)

Figure 3: Replicator Dyanmics: (a) the original hypergraph representation of
data (b) an analogy to population evolution (c) a possible population profile in
the next generation

As is known, the ability for a people to live is related with their population.
If some peoples have the trend to getting less population, there are probably
some other peoples stronger than them and they become weaker. Gradually,
these peoples vanished and no longer exist in the community. Simultaneously,
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if some peoples get more population during the evolutions. They could become
stronger and stronger. One likely evolution states are shown in fig.4. In this
case, only one side of the peoples are left at the end and these peoples can be
proved to be strongly connected.

(a)

(b)

(c)

Figure 4: Clustering by Replicator Dynamics: (a) the original population (b)
population during evolutions (c) the final evolutionary stable states of the pop-
ulation

It is noticed that the population left at the stable state can be corresponded
to a cluster of the original data points. Therefore, if the replicator dynamics
procedure is repeated, the original data can be partitioned into multiple clusters.

2 Hypergraph Clustering

2.1 General formulation

The problem of clustering a k-graph H(V,E, ω) formed by a set of N vertices
V = {1, . . . , N}, set of hyperedge E ⊆ V k and a real value affnity function
ω : e 7→ R, can be mathematically defined as solving,

C∗ = arg max
C

S(C) (1)

s.t. S(C) =
1

mk

∑
e∈C:C⊆E

ω(e) (2)

4



where S(C) is the cluster score of cluster C ⊆ E each with m vertices.
This can be reformulated using an assignment vector,

x̂ = arg max
x

∑
e∈E

ω(e)
∏
vi∈e

xvi (3)

such that

x ∈
{

0,
1

m

}N
where x = (x1, x2, . . . , x|V |) (4)

Thus finding a good cluster means finding a subset of vertices with high cluster
score. Solving for 3 would be an expensive combinatorial problem and thus
NP-Hard. We will now look at the relax version of this problem from the game
theoretic point of view.

3 Non-Cooperative Games

Let us consider k players game Γ = (P, S, π) where P = {1, . . . , k} each with N
pure strategies S = {1, . . . , N} and the payoff function be defines by π : Sk 7→ R.
Let x be the n-dimensional vector with each xi denoting the probability of
playing the ith−strategy and let it be defined over the simplex set,

∆ = {x ∈ RN :
∑
j∈S

xj = 1, xj ≥ 0,∀j ∈ S} (5)

Let x(j) denote the mixed-strategy of the jth player. Then the overall expected
payoff of the population is given by,

u(x(1), . . . x(k)) =
∑

(s1,...sk)∈Sk

π(s1, . . . sk)

k∏
i=1

x(i)si (6)

3.1 Evolutionary Stable Strategy

As explained in the introduction, the solution x of the above game is to find
equillibrium x ∈ ∆ such that every player obtains some expected payoff and
no strategy can prevails upon others. Noe observe that if we solve for Nash
equilibria, then we obtain,

u(ei, x[k−1]) ≤ u(x[k]),∀i ∈ S (7)

where ei denotes the player only playing ith−strategy. Thus at Nash equilibrium
every player in the population performs at most as well as the overall popula-
tion expected payoff. But this notion is too weak as it lacks stability under
small perturbations. Instead we need strict inequality in the above equilibrium
criteria. Formally, for any y ∈ ∆ \ {x} and wδ = (1− δ)x+ δy we need,

u(y, w
[k−1]
δ ) < u(x,w

[k−1]
δ ) (8)

to hold true for sufficiently small ε. Indeed, every ESS is necessarily a Nash
equilibrium but not the other way around.
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3.2 Non-Cooperative Clustering Games

Before we go on to point out the ways to solve the original problem, we would
like to briefly mention the analogy of non-cooperative games to hypergraph
clustering problem.

• In order to solve the hypergraph clustering problem H(V,E, ω) mentioned
in (3) using the non-cooperative game Γ = (P, S, π) in (6) we need strong
assumption that π is supersymmetric i.e., πσ(i) = π ∀i.

• Within the class of supersymmetric functions one such trivial payoff func-
tion we can think of is,

π(s1, . . . , sk) =
1

k!
ω(s1, . . . , sk), ∀{s1, . . . , sk} ∈ E (9)

• The N input data points of clustering problem forms the N pure strategies
of each of the k-players. Further, note that as such k players do not exist
and they are all virtual players.

• The support of solution x to ESS problem, correspond to the final points
belonging to that cluster.

• Multiple clusters are extracted one after another. After the extraction of
the best cluster, data points of that cluster is removed and then the above
game is reran on the remaining points.

• In [1], it has been shown that the ESS clusters satisfies the two basic
properties of an cluster, Internal coherency - elements belonging to that
cluster has high mutual similarities and External incoherency - the overall
cluster internal coherency decreases by introducing external elements.

4 Optimization

As mentioned earlier, we will solve original problem (3) using the relax problem
(6) using the solution to ESS problem. Observe that the function in (6) is
homogeneous polynomial equation and thus it is a convex optimization problem.
Further in [1], the author proves that the Nash equilibria of the game Γ are the
critical points of u(x[k]) and ESS are the strict local maximizers of u(x[k]) over
the simplex region. Thus it is enough if we find the maxima points of the (6).
One popular method to solve this optimization problem is by using projected
gradient ascent algorithm on the region ∆. But this requires large number of
iterations. Instead we take a look at two popular algorithm in the literature
used to solve the above

4.1 Baum-Eagon Algorithm

Any homogeneous polynomial f(x) in variable x ∈ ∆ with nonnegative coeffi-
cients can be approximately solve using the following heuristics,

x∗j = xj

∂f(x)
∂xj∑n

l=1 xl
∂f(x)
∂xl

(10)
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Using this heuristics for solving (6), we obtain,

xj(t+ 1) = xj(t)
dj

u(x(t)[k])
∀j = 1, . . . n (11)

where dj = u(ej , x(t)[k−1]) and u(x(t)[k]) =
∑
l xldl

4.2 Frank-Wolfe Algorithm

In [4], author discusses the approximation algorithm to efficiently solve the
hypergraph clustering problem which we found to be very equivalent to Frank-
Wolfe algorithm. Frank -Wolfe algorithm is very much from the class of gradient
ascent algorithm i.e., line search algorithm except that we do not require a
projection step if we start with initial point from the bounded set.
Define a ε-bounded simplex set ∆ε s.t. x ∈ [0, ε]N . With this we presume that
the minimum data points in a cluster is 1

ε .
Initialize x(0) ∈ ∆ε, t← 0. Iterate,

1. Compute d.

2. y∗ ← arg max dTy s.t. y ∈ ∆ε.

3. If dT (y∗ − x(t)) = 0, return x(t).

4. δ∗ ← arg maxu(w
[k]
δ ) s.t. wδ = (1− δ)x(t) + δy∗.

5. x(t+ 1)← wδ∗

where d is the vector of dj elements defined in the previous algorithm. The
overall complexity of each iteration of all the algorithm is O(Nk). Frank-Wolfe
algorithm converges the fastest with an average of 10 iterations.

5 Cooperative Clustering Using Shapley Value

5.1 Density-Restricted Agglomerative Clustering Algorithm

Using the tools that we have established, we can implement a clustering algo-
rithm based on the work of Garg[3] and Dhamal[2]. This agglomerative tech-
nique takes advantage of the Shapley value to establish cluster centers and adds
points to these clusters based on a k-wise similarity function. The clusters can
be expanded by points that also have similar Shapley values.

The algorithm selects cluster centers from the unallocated points with max-
imum Shapley value. The maximum Shapley value can be considered as a good
cluster center because we saw in the previous section that it is comprised of the
sum of similarities. Having good similarity with other points is a good property
of a cluster center.

We then add points to the cluster based on a similarity function. Although
we showed that similar points have similar Shapley values, we cannot assume
that the reverse is also true. For this reason, we need to consider similarity (e.g.
Euclidean distance in k=2 settings) when adding points to a cluster. Finally, we
can consider points with close similarity and close Shapley value to the cluster
center as good expansion points.
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Again, consider that the Shapley value is a sum of similarities across all
points. In the example case of k = 2, we can say that this is a measurement
of density. A point that is similar to the cluster center in distance and density
will share expansion properties in clustering tightly spaced points.

We implemented this algorithm for both k=2 and k=3 using Euclidean dis-
tance and collinearity respectively as similarity functions. We obtained promis-
ing results, even comparing favorably against popular clustering techniques such
as k-means under certain data sets.
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