Hypergraph Clustering based on Game Theory

Ahmed Abdelkader, Nick Fung, Ang Li and Sohil Shah

University of Maryland

May 8, 2014
Overview

- Introduction
- Related Work
- Our Model
- Algorithm
- Conclusions
Clustering

(a) DNA (b) Social Network (c) Image

from Google Image
What is clustering?

Original data
What is clustering?

Clustering using pairwise distances

Pairs Between Clusters

Pairs within a cluster
Pairwise distances are not enough

Another example
Pairwise distances are not enough

Clustering lines using pairwise distances
Pairwise distances are not enough

Another example
Pairwise distances are not enough

Clustering lines using measurement of more than 2 points

Colinearity of K(>2) points
A general data representation: Hypergraph

Hypergraph is a generalization of a graph in which an edge can connect any number of vertices.

Definition (Hypergraph)
A hypergraph \(H \) is a pair \(H = (V, E) \) where \(V \) is a set of elements called nodes or vertices, and \(E \) is a set of non-empty subsets of \(V \) called hyperedges or edges.

Definition (Weighted Hypergraph)
A weighted hypergraph \(H(V, E, \omega) \) is a hypergraph where each hyperedge is associated with a weight defined by \(\omega \).

Definition (Weighted k-graph)
A weighted \(k \)-graph (aka \(k \)-uniform hypergraph) \(H(V, E, \omega) \) is a weighted hypergraph such that all its hyperedges have size \(k \).
Hypergraph Clustering

Given a k-graph $H(V, E, \omega)$ where for each vertex combinations $(v_1, v_2, \ldots, v_k) \in V$, the weight $\omega(v_1, v_2, \ldots, v_k) \in [0, 1]$ is defined by their similarity measure (the possibility that they come from the same cluster). The Hypergraph Clustering problem is to cluster the vertices from V into multiple clusters $\{C_1, C_2, \ldots\}$ (the total number of clusters is unknown) such that

1. each vertex belongs to one and only one cluster;
2. vertices from the same cluster have higher similarities;
3. vertices from different clusters have lower similarities.
Clustering is related to game theory

Non-cooperative games based approaches:

- Replicator dynamics
- Related works:
 - Rota Bulò and Pelillo, PAMI 2013 [1]
 - Donoser, BMVC 2013 [3]
 - Liu et al., CoRR 2013 [5]

Cooperative games based approaches:

- Shapley values
- Related works:
 - Garg et al., TKDE 2013 [4]
 - Dhamal et al., CoRR 2012 [2]
Non-cooperative games

Replicator Dynamics based approaches
Non-cooperative games

Replicator Dynamics based approaches (Let $K = 3$)
Non-cooperative games
Replicator Dynamics based approaches

We help each other...
We fight each other
If you live, I die
Good neighborhood
Non-cooperative games

Replicator Dynamics based approaches

We help each other...

Good neighborhood!

We fight each other

If you live, I die

increase in population
decrease in population
Non-cooperative games

Replicator Dynamics based approaches
Non-cooperative games

Replicator Dynamics based approaches
Hypergraph clustering

A general formulation

The problem of clustering a k-graph $H(V, E, \omega)$ can be mathematically defined as solving,

$$C^* = \arg \max_C S(C)$$

s.t. $$S(C) = \frac{1}{m^k} \sum_{e \in C : C \subseteq E} \omega(e)$$

where $S(C)$ is the cluster score.

This can be reformulated using an assignment vector,

$$\hat{x} = \arg \max_x \sum_{e \in E} \omega(e) \prod_{v_i \in e} x_{v_i}$$

such that

$$x \in \left\{0, \frac{1}{m}\right\}^N \text{ where } x = (x_1, x_2, \ldots, x_{|V|})$$
Non-Cooperative Games

Formulation

- There are k players $P = \{1, 2, \ldots, k\}$ each with N pure strategies $S = \{1, \ldots, N\}$.
- The payoff function $\pi : S^k \mapsto \mathbb{R}$
- $\Delta = \{x \in \mathbb{R}^N : \sum_{j \in S} x_j = 1, x_j \geq 0, \forall j \in S\}$. Let $x^{(i)} \in \Delta$.
- The utility function of the game $\Gamma = (P, S, \pi)$ for any mixed strategy is given by,

$$u(x^{(1)}, \ldots, x^{(k)}) = \sum_{(s_1, \ldots, s_k) \in S^k} \pi(s_1, \ldots, s_k) \prod_{i=1}^{k} x_{s_i}^{(i)} \quad (5)$$
Evolutionary Stable Strategy

- Find equilibrium $x \in \Delta$ s.t. every player obtains some expected payoff and no strategy can prevail upon others.
- For Nash equilibrium we get, $u(e^j, x^{[k-1]}) \leq u(x^k), \forall j \in S$
- Instead for any $y \in \Delta \setminus \{x\}$ and $w_\delta = (1 - \delta)x + \delta y$ we need $u(y, w_\delta^{[k-1]}) < u(x, w_\delta^{[k-1]})$. This is ESS.
Non-Cooperative Clustering Games
Assumptions, Analogy and Properties

- Assumption: π is supersymmetric
- Payoff function

$$\pi(s_1, \ldots, s_k) = \frac{1}{k!}\omega(s_1, \ldots, s_k), \quad \forall\{s_1, \ldots, s_k\} \in E \quad (6)$$

- Here N input data point is analogous to N pure strategies of k player game.
- The support of final ESS x correspond to the points belonging to that cluster.
- Solving for (3) is equivalent to finding maxima point of (5).(*)
- ESS cluster satisfies the two basic properties of cluster, Internal coherency and External incoherency.
Optimization Criteria

- Solving (5) optimally is NP-Hard.
- Observe that the function in (5) is homogeneous polynomial equation and thus it is a convex optimization problem.
- In [1], author proves that the Nash equilibria of game Γ are the critical points of $u(x^{[k]})$ and ESS are the strict local maximizers of $u(x^{[k]})$ over the simplex region.
- Performing **Projected** gradient ascent in Δ requires large number of iterations.

\[
\begin{align*}
\left(u(x^{[k]}) = \sum_{(s_1, \ldots, s_k) \in S^k} \pi(s_1, \ldots, s_k) \prod_{i=1}^{k} x_{s_i}\right)
\end{align*}
\]
Baum-Eagon Algorithm

Any homogeneous polynomial \(f(x) \) in variable \(x \in \Delta \) with nonnegative coefficients can be approximately solve using the following heuristics,

\[
x^*_j = x_j \frac{\partial f(x)}{\partial x_j} \sum_{l=1}^{n} x_l \frac{\partial f(x)}{\partial x_l}
\]

(7)

Using this heuristics for solving (5), we obtain,

\[
x_j(t + 1) = x_j(t) \frac{d_j}{u(x(t)[k])} \quad \forall j = 1, \ldots n
\]

(8)

where \(d_j = u(e^j, x(t)[k-1]) \) and \(u(x(t)[k]) = \sum_l x_l d_l \).
Frank-Wolfe Algorithm

- Use ϵ-bounded simplex set Δ_ϵ s.t. $x \in [0, \epsilon]^N$.
- Initialize $x(0) \in \Delta_\epsilon$, $t \leftarrow 0$.
- Iterate
 1. Compute d.
 2. $y^* \leftarrow \text{arg max } d^T y \text{ s.t. } y \in \Delta_\epsilon$.
 3. If $d^T (y^* - x(t)) = 0$, return $x(t)$.
 4. $\delta^* \leftarrow \text{arg max } u(w_\delta^{[k]}) \text{ s.t. } w_\delta = (1 - \delta)x(t) + \delta y^*$.
 5. $x(t + 1) \leftarrow w_{\delta^*}$.

The overall complexity of each iteration of all the algorithm is $O(N^k)$. Frank-Wolfe algorithm converges the fastest with an average of 10 iterations.
This page is intentionally left blank.
Reference

