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Clustering

(a) DNA (b) Social Network (c) Image

from Google Image
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What is clustering?
Original data
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What is clustering?
Clustering using pairwise distances
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Pairwise distances are not enough
Another example
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Pairwise distances are not enough
Clustering lines using pairwise distances
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Pairwise distances are not enough
Another example
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Pairwise distances are not enough
Clustering lines using measurement of more than 2 points
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A general data representation: Hypergraph

Hypergraph is a generalization of a graph in which an edge can
connect any number of vertices.

Definition (Hypergraph)

A hypergraph H is a pair H = (V ,E ) where V is a set of elements
called nodes or vertices, and E is a set of non-empty subsets of V
called hyperedges or edges.

Definition (Weighted Hypergraph)

A weighted hypergraph H(V ,E , ω) is a hypergraph where each
hyperedge is associated with a weight defined by ω.

Definition (Weighted k-graph)

A weighted k-graph (aka k-uniform hypergraph) H(V ,E , ω) is a
weighted hypergraph such that all its hyperedges have size k .
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The problem we address

Hypergraph Clustering

Given a k-graph H(V ,E , ω) where for each vertex combinations
(v1, v2, . . . , vk) ∈ V , the weight ω(v1, v2, . . . , vk) ∈ [0, 1] is defined
by their similarity measure (the possibility that they come from the
same cluster). The Hypergraph Clustering problem is to cluster the
vertices from V into multiple clusters {C1,C2, . . .} (the total
number of clusters is unknown) such that

1. each vertex belongs to one and only one cluster;

2. vertices from the same cluster have higher similarities;

3. vertices from different clusters have lower similarities.
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Clustering is related to game theory

Non-cooperative games based approaches:

I Replicator dynamics
I Related works:

I Rota Bulò and Pelillo, PAMI 2013 [1]
I Donoser, BMVC 2013 [3]
I Liu et al., CoRR 2013 [5]

Cooperative games based approaches:

I Shapley values
I Related works:

I Garg et al., TKDE 2013 [4]
I Dhamal et al., CoRR 2012 [2]
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Non-cooperative games
Replicator Dynamics based approaches
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Non-cooperative games
Replicator Dynamics based approaches (Let K = 3)
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Non-cooperative games
Replicator Dynamics based approaches
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Non-cooperative games
Replicator Dynamics based approaches
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Non-cooperative games
Replicator Dynamics based approaches
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Non-cooperative games
Replicator Dynamics based approaches
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Hypergraph clustering
A general formulation

The problem of clustering a k-graph H(V ,E , ω) can be
mathematically defined as solving,

C ∗ = arg max
C

S(C ) (1)

s.t. S(C ) =
1

mk

∑
e∈C :C⊆E

ω(e) (2)

where S(C ) is the cluster score.
This can be reformulated using an assignment vector,

x̂ = arg max
x

∑
e∈E

ω(e)
∏
vi∈e

xvi (3)

such that

x ∈
{

0,
1

m

}N

where x = (x1, x2, . . . , x|V |) (4)
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Non-Cooperative Games
Formulation

I There are k players P = {1,2,,. . . k} each with N pure
strategies S={1,. . . N}.

I The payoff function π : Sk 7→ R
I ∆ = {x ∈ RN :

∑
j∈S xj = 1, xj ≥ 0,∀j ∈ S}. Let x (i) ∈ ∆.

I The utility function of the game Γ = (P, S , π) for any mixed
strategy is given by,

u(x (1), . . . x (k)) =
∑

(s1,...sk )∈Sk

π(s1, . . . sk)
k∏

i=1

x
(i)
si (5)
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Evolutionary Stable Strategy

I Find equillibrium x ∈ ∆ s.t. every player obtains some
expected payoff and no strategy can prevails upon others.

I For Nash equillibrium we get, u(e j , x [k−1]) ≤ u(x [k]),∀j ∈ S

I Instead for any y ∈ ∆ \ {x} and wδ = (1− δ)x + δy we need

u(y ,w
[k−1]
δ ) < u(x ,w

[k−1]
δ ). This is ESS.
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Non-Cooperative Clustering Games
Assumptions, Analogy and Properties

I Assumption: π is supersymmetric

I Payoff function

π(s1, . . . , sk) =
1

k!
ω(s1, . . . , sk), ∀{s1, . . . , sk} ∈ E (6)

I Here N input data point is analogous to N pure strategies of k
player game.

I The support of final ESS x correspond to the points belonging
to that cluster.

I Solving for (3) is equivalent to finding maxima point of (5).(*)

I ESS cluster satisfies the two basic properties of cluster,
Internal coherency and External incoherency.

22 / 26



Optimization Criteria

I Solving (5) optimally is NP-Hard.

I Observe that the function in (5) is homogeneous polynomial
equation and thus it is a convex optimization problem.

I In [1], author proves that the Nash equilibria of game Γ are
the critical points of u(x [k]) and ESS are the strict local
maximizers of u(x [k]) over the simplex region.

I Performing Projected gradient ascent in ∆ requires large
number of iterations.u(x [k]) =

∑
(s1,...sk )∈Sk

π(s1, . . . sk)
k∏

i=1

xsi
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Baum-Eagon Algorithm

Any homogeneous polynomial f(x) in variable x ∈ ∆ with
nonnegative coefficients can be approximately solve using the
following heuristics,

x∗j = xj

∂f (x)
∂xj∑n

l=1 xl
∂f (x)
∂xl

(7)

Using this heuristics for solving (5), we obtain,

xj(t + 1) = xj(t)
dj

u(x(t)[k])
∀j = 1, . . . n (8)

where dj = u(e j , x(t)[k−1]) and u(x(t)[k]) =
∑

l xldl
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Frank-Wolfe Algorithm

I Use ε-bounded simplex set ∆ε s.t. x ∈ [0, ε]N .

I Initialize x(0) ∈ ∆ε, t ← 0.
I Iterate

1. Compute d.
2. y∗ ← arg maxdTy s.t. y ∈ ∆ε.
3. If dT (y∗ − x(t)) = 0, return x(t).

4. δ∗ ← arg max u(w
[k]
δ ) s.t. wδ = (1− δ)x(t) + δy∗.

5. x(t + 1)← wδ∗

The overall complexity of each iteration of all the algorithm is
O(Nk). Frank-Wolfe algorithm converges the fastest with an
average of 10 iterations.
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