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Clustering

(a) DNA (b) Social Network
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What is clustering?
Original data
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What is clustering?

Clustering using pairwise distances

Pairs Between Clusters

O AN
’ \ ® O
® / \

o0 / . ®
o \ o

o0 / . @

...\o /

° o.o
;e

Pairs within a cluster
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Pairwise distances are not enough

Another example

6/26



Pairwise distances are not enough

Clustering lines using pairwise distances
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Pairwise distances are not enough

Another example
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Pairwise distances are not enough

Clustering lines using measurement of more than 2 points

. Colinearity of K(>2) points
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A general data representation: Hypergraph

Hypergraph is a generalization of a graph in which an edge can
connect any number of vertices.

Definition (Hypergraph)

A hypergraph H is a pair H = (V/, E) where V is a set of elements

called nodes or vertices, and E is a set of non-empty subsets of V
called hyperedges or edges.

Definition (Weighted Hypergraph)

A weighted hypergraph H(V, E,w) is a hypergraph where each
hyperedge is associated with a weight defined by w.

Definition (Weighted k-graph)

A weighted k-graph (aka k-uniform hypergraph) H(V, E,w) is a
weighted hypergraph such that all its hyperedges have size k.
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The problem we address

Hypergraph Clustering
Given a k-graph H(V, E,w) where for each vertex combinations
(vi,va,...,vk) € V, the weight w(vi, va,...,vk) € [0,1] is defined
by their similarity measure (the possibility that they come from the
same cluster). The Hypergraph Clustering problem is to cluster the
vertices from V into multiple clusters {Cy, Gy, ...} (the total
number of clusters is unknown) such that

1. each vertex belongs to one and only one cluster;

2. vertices from the same cluster have higher similarities;

3. vertices from different clusters have lower similarities.
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Clustering is related to game theory

Non-cooperative games based approaches:

» Replicator dynamics
» Related works:

» Rota Bulo and Pelillo, PAMI 2013 [1]
» Donoser, BMVC 2013 [3]
> Liu et al., CoRR 2013 [5]

Cooperative games based approaches:
» Shapley values

» Related works:

» Garg et al., TKDE 2013 [4]
» Dhamal et al., CoRR 2012 [2]
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Non-cooperative games

Replicator Dynamics based approaches
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Non-cooperative games
Replicator Dynamics based approaches (Let K = 3)
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Non-cooperative games

Replicator Dynamics based approaches

We help each other...
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Non-cooperative games

Replicator Dynamics based approaches

We help each other...

increase in population

We fight each other

If you live, | die
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decrease in population
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Non-cooperative games

Replicator Dynamics based approaches
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Non-cooperative games

Replicator Dynamics based approaches
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Hypergraph clustering

A general formulation
The problem of clustering a k-graph H(V/, E,w) can be
mathematically defined as solving,

Cc* = arg max S5(C)
1
st. S(C)=— > wle)
ecC:CCE

where S(C) is the cluster score.
This can be reformulated using an assignment vector,

X =arg max Zw(e) H Xy,

ecE vice

such that

BL
xE{O,m} where  x = (x1, %2, ..., Xv|)
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Non-Cooperative Games

Formulation

v

There are k players P = {1,2,,.. .k} each with N pure
strategies S={1,...N}.

The payoff function 7 : ¥ — R

A={xeRN 1D jesXi =1, >0,Vj € S}. Let x() € A,
The utility function of the game I' = (P, S, ) for any mixed
strategy is given by,

u(x® xRy = Z m(s1,... Hxsl (5)

(51,...Sk)65k
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Evolutionary Stable Strategy

» Find equillibrium x € A s.t. every player obtains some
expected payoff and no strategy can prevails upon others.

» For Nash equillibrium we get, u(e/, xIk=1) < u(x!¥),vj € S
» Instead for any y € A\ {x} and ws = (1 — d)x + dy we need
u(y, Wékil]) < u(x, Wé[kfll). This is ESS.
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Non-Cooperative Clustering Games

Assumptions, Analogy and Properties

» Assumption: 7 is supersymmetric

» Payoff function

1
7T(517--'a5k):Hw(slw-'ask)» V{Sl,...,Sk}GE (6)

» Here N input data point is analogous to N pure strategies of k
player game.

» The support of final ESS x correspond to the points belonging
to that cluster.

» Solving for (3) is equivalent to finding maxima point of (5).(*)

» ESS cluster satisfies the two basic properties of cluster,
Internal coherency and External incoherency.
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Optimization Criteria

» Solving (5) optimally is NP-Hard.

» Observe that the function in (5) is homogeneous polynomial
equation and thus it is a convex optimization problem.

» In [1], author proves that the Nash equilibria of game I are
the critical points of u(x[¥l) and ESS are the strict local
maximizers of u(xK]) over the simplex region.

» Performing Projected gradient ascent in A requires large
number of iterations.

k
u(x1d) = Z 7(s1,. .. Sk) Hxsi

(s1,..-5k)ESK
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Baum-Eagon Algorithm

Any homogeneous polynomial f(x) in variable x € A with
nonnegative coefficients can be approximately solve using the
following heuristics,

Of(x)
* 8XJ
X =X A (7)
EI 1X/ 6x,
Using this heuristics for solving (5), we obtain,
x(t+1) = x()L Wi=1,...n (8)

where d; = u(e/, x(t)l“"1) and u(x(t)) = 37, xd)
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Frank-Wolfe Algorithm

» Use e-bounded simplex set A, s.t. x € [0, ¢]".
» Initialize x(0) € A, t < 0.
> lterate

1. Compute d.

y* < arg maxdTy s.t. yeA..

If d7 (y* — x(t)) = 0, return x(t).

0% < arg max u(w(gk]) s.it. wy = (1—9)x(t) + dy*.
X(t+ 1) — We=

ok e

The overall complexity of each iteration of all the algorithm is
O(Nk). Frank-Wolfe algorithm converges the fastest with an
average of 10 iterations.
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