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Abstract

Oblivious transfer is widely used in secure multiparty computation. In this paper, we propose
a game theoretic analysis of this primitive and discuss how a protocol for efficient rational
oblivious transfer should be in the real world.

1 Introduction

1-out-of-2 was first suggested by Even et al. [6] as a generalization of Rabin’s oblivious transfer
[15], who built the first OT based on RSA assumption. Even et al. built 1-out-of-2 OT based
on arbitrary public key encryption instead of RSA assumption. The 1-out-of-N OT was then
introduced by Brassard et al. [3] under the name ANDOS (all or nothing disclosure of secrets).
This notion is widely used in multiparty computation. Here are two famous applications below.

Yao’s Garbled Circuits Protocol Yao’s garbled circuits [18] allows two parties to securely
compute an arbitrary function if it can be expressed as a Boolean circuit. First the sender use
symmetric keys to encrypt the Boolean gates and sends the encrypted function together with
the keys corresponding to his inputs to the receiver. The receiver then uses a 1-out-of-2 OT to
obliviously obtain the keys that correspond to his inputs and evaluates the encrypted function gate
by gate. Then either the receiver sends the output to the sender or the sender reveals the mapping
from keys to output bits will get the result.

The GMW Approach The protocol proposed by Goldreich, Micali and Wigderson (GMW)
[8] also achieves almost the same result as Yao’s approach but use different techniques. They
also represent the function to be computed as Boolean circuit. Then both parties use the XOR
operation to secretly share their inputs. An XOR gate is evaluated by just locally XORing the
share while an AND gate is evaluated with the help of 1-out-of-2 OT on bits. To reconstruct the
outputs, both parties exchange their output shares. The performance of GMW highly depends on
the number of OTs and the depth of evaluated circuits since the computation of AND gates require
OT evaluation.

There exist two kinds of OT extensions. One is to use the existent 1-out-of-2 to construct
1-out-of-N OT or even k-out-of-N OT. For instance, the 1-out-of-N OT constructions of [4] and [5]
need N calls to the 1-out-of-2 OT protocol, but in [14], they just need logN calls to the 1-out-of-2
OT protocol plus O(N) evaluations of a pseudo-random function. Moreover, in [13] they implement
1-out-of-N OT with an amortized overhead of a single 1-out-of-2 OT. The other kind is to use OT
for short strings to get OT for long strings [11].
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Rational Cryptography. We used to consider the worst-case scenario, i.e., we allow the ad-
versary cannot deviate from the specified protocol arbitrarily, even without a reason. While this
approach yields strong security guarantees, it has been criticized as being overly pessimistic since it
neglects the incentives that lead parties to deviate from their prescribed behavior; this may result
in protocols designed to defend against highly unlikely attacks. Motivated by this, a recent line of
work on “rational cryptography” has focused on using ideas from game theory to analyze crypto-
graphic protocols run by a set of rational parties [9, 2, 10, 1, 7]. There, parties are no longer viewed
as being “good” (semi-honest) or “bad” (malicious); all parties are simply rational, motivated by
some utility function. The goal of this line of work is to design protocols for which following the
protocol is a game-theoretic equilibrium for the parties. It has been shown that by incorporating
incentives one can circumvent impossibility results [1, 7], or design protocols with better efficiency.

RSA based 1-out-of-2 oblivious transfer protocol. This was proposed by Even et al. [6].
This scheme uses RSA encryption to obtain a 1-out-of-2 oblivious transfer between the sender and
the receiver. The protocol is as follows:

1. The sender has two messages m0 and m1. and the receiver has a choice bit σ.

2. The sender generates an RSA key pair where d is the secret key, e is the public key and the
corresponding value of N .

3. The sender sends N , e and two random keys r0 and r1 to the receiver.

4. The receiver computes v = (mσ + kε) mod N and sends it to the sender.

5. The sender now computes k0 = (v − m0)
d mod N and k1 = (v − m1)

d mod N , adds m0

and m1 to these values respectively and sends the corresponding values m′0 and m′1 to the
receiver.

6. The receiver can obtain mσ = m′σ − kσ.

2 Preliminaries

In this section, we present the oblivious transfer primitive from the perspective of game theory and
also some game theory basics. For completeness, we include the definition of oblivious transfer in
the appendix.

Notations. We say a function µ : N ← R is called negligible, denoted as negl(·), if for any
polynomial p, there exists a value N ∈ N such that for any n > N , we have µ(n) < 1/p(n). We
say that two distributions X and Y are computationally indistinguishable, denoted as X ≈ Y, if for
every ppt distinguishier D, it holds that

|Pr[D(X ) = 1]−Pr[D(Y) = a]| ≤ negl(λ)

where λ is the security parameter.
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2.1 Game Theoretic Definitions

We review some the relevant concepts from Game Theory, and the extensions needed to put these
concepts in the oblivious transfer model. Traditionally, a two-player game Γ = ({A0, A1}, {u0, u1})
is determined by specifying, for each player Pi, a set Ai of possible actions and a utility function
ui : A0 × A1 → R. Let A = A0 × A1 denote the outcome of the game. The utility function ui of
player Pi expresses this player’s preferences over outcome a = (a0, a1) ∈ A. We say that player
Pi prefers outcome a to outcome a′ if and only if ui(a) > ui(a

′). A strategy si for player Pi is a
distribution on the action set Ai. Given a strategy vector s = (s1, s2), we let ui(s) be the expected
utility of Pi with respect to the event that the other party plays according to s. We continue with
a definition of Nash equilibrium:

Definition 2.1. Let Γ = ({A0, A1}, {u0, u1}) be a game defined as above, and s = (s0, s1) be the
strategy vector as above. Then s is a Nash equilibrium if for all i and any strategy s′, we have

ui(s
′′
0, s
′′
1) ≤ ui(s)

where s′′i = s′i, and s′′1−i = s1−i.

The above formalism is also naturally extended to the case of extensive form games, where the
parties take turns when taking actions. Another natural extension is to games with incomplete
information.

Extensions for cryptographic model. There exist three kinds of players in cryptographic
world. One is semi-honest where the player follows the protocol but is curious about the privacy of
other players. One is malicious where the places can deviate from the specified protocol arbitrarily.
Another one is rational where the players may deviate from the protocol only for a high utility.
Hence, we have to consider different types of players in the scenario, which directs us to Bayesian
game. We will formalize oblivious transfer using a Bayesian game.

Definition 2.2. The game is defined as Γ = (N, {Ai, ui, Ti}i∈N ), where:

• N is the set of players, N = {P0(sender), P1(receiver)}.

• Ai is the action set for player Pi.

• Ti is the type of player Pi, Ti = {s,m, r}, which stands for semi-honest, malicious and rational
correspondingly.

• ui : Ai → R is utility function for player Pi.

Since we consider rationality in oblivious transfer protocol, so the type for each player Pi should
be r. A Bayesian Nash equilibrium is defined as a strategy profile specified for each player about
the type of the other player that maximizes the expected utility for each player given their beliefs
about the other players’ types, and the strategy played by the other player.

3 Cryptographic Perspective Oblivious Transfer

Execution in the ideal world. The ideal world includes a trusted third party. An ideal oblivious
transfer proceeds as follows:
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Input: The sender S obtains an input pair (m0,m1) with |m0| = |m1|, and the receiver obtains a
selection bit σ ∈ {0, 1}.

Send input to trusted party: An honest party always sends its input unchanged to the trusted
party. A malicious party may either abort, in which case it sends ⊥ to the trusted party, or
send some other inputs to the trusted party.

Trusted party computes output: If the trusted party receives ⊥ from one of the parties, then
it sends ⊥ to both parties and halts. Otherwise, upon receiving messages (m′1,m

′
0) from

sender and a bit σ′ from receiver, the trusted party sends m′σ′ to receiver R and halts.

Outputs: An honest party always outputs the message it has obtained from the trusted party,
while a malicious party may output a function of its initial inputs and the message obtained
from the trusted third party.

Denote f the oblivious transfer functionality and let (S,R) be a pair of non-uniform ppt algo-
rithms. Then the joint execution of f under algorithms (S,R) in the ideal model, denoted as
Idealf,(S,R)((m0,m1), σ), is defined as the output pair of S and R in the above ideal execution.

Execution in the real world. We next consider the real model in which a real two-party
protocol is executed and there exists no trusted third party. In this case, a malicious player may
follow any arbitrary feasible strategy, which can be implemented by a ppt algorithm. Let π be a
protocol between sender and receiver, and (S,R) be the corresponding non-uniform ppt algorithms
adopted by the parties. Then the joint execution of π under (S,R) in the real model, denoted
as Realπ,(S,R)((m0,m1), σ), is defined as the output pair of (S,R) resulting from the protocol
execution.

Having defined the ideal and real models, we can now define security of protocols. We follow
the ideal/real world paradigm in secure computation. Loosely speaking, the definition asserts that
a secure two-party protocol (in the real model) emulates the ideal model (in which a trusted party
exists).

Definition 3.1. Let f denote an oblivious transfer protocol in the ideal world, and π denote an
oblivious transfer protocol in the real world. Protocol π is said to be a secure oblivious transfer
protocol if for every pair of non-uniform ppt algorithms (S,R) in the real world, there exist a pair
of non-uniform ppt algorithms (S′, R′) in the ideal world, such that for every m0,m1 ∈ {0, 1}∗ of
the same length and every σ ∈ {0, 1}, it holds that

Idealf,(S′,R′)((m0,m1), σ) ≈ Realπ,(S,R)((m0,m1), σ)
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