Stochastic Matching in Hypergraphs

Amit Chavan, Srijan Kumar and Pan Xu

May 13, 2014

BACKGROUNE

STOCHASTIC *k*-SET PACKING

References

Roadmap

INTRODUCTION Matching Stochastic Matching

BACKGROUND Stochastic Knapsack Adaptive and Non-adaptive policies Adaptivity Gap

STOCHASTIC *k*-SET PACKING LP relaxation for optimal adaptive A Solution Policy Related Work

BACKGROUND 000 STOCHASTIC *k*-SET PACKING

References

MATCHING

Definition

Given a (hyper)graph G(V, E) a *matching* or *independent edge set* is a subset of *E* such that no two of them have a vertex in common.

Figure: http://en.wikipedia.org/wiki/File:Maximum-matching-labels.svg

BACKGROUND 000 STOCHASTIC k-SET PACKING

References

MATCHING

Resource allocation

Figure: http://www.phdcomics.com/comics/archive/phd051908s.gif

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	Refe
0000000	000	000000	
			(

MATCHING

Stable Marriage Problem

Figure: http://cramton.umd.edu/econ415/deferred-acceptance-algorithm.pdf

BACKGROUND 000 STOCHASTIC *k*-SET PACKING

References

MATCHING

Latin Square Problem

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Figure: http://upload.wikimedia.org/wikipedia/commons/thumb/3/31/Sudoku-by-L2G-20050714.solution.svg/250px-Sudoku-by-L2G-20050714.solution.svg.png

STOCHASTIC MATCHING

Setting:

- ► Each edge *e* is present independently with probability *p*_{*e*}.
- ► **Objective:** Maximum matching in graph given $p_e \quad \forall e \in E$.
- We don't know whether edge is present or not just the probability.
- To find, query the edge, and if the edge is present, add it to matching "probing" of edge.
- **Task:** Adaptively query the edge to maximize the expected matching weight.
- ► First introduced and studied by Chen, Immorlica, Karlin, Mahdian, and Rudra [2009].

BACKGROUND 000 STOCHASTIC *k*-SET PACKING

References

WHY IS IT IMPORTANT?

Motivated by:

- Kidney exchange
- Online dating

BACKGROUND

STOCHASTIC *k*-SET PACKING

References

WHY IS IT IMPORTANT? - KIDNEY EXCHANGE

Figure: http://www.cartoonstock.com/lowres/animals-transplant-pig-kidney-transplantation-surgeon-dro0315l.jpg

 INTRODUCTION
 BACKGROUND
 STOCHASTIC k-SET PACKING
 References

 0000000
 000
 0000000
 0000000
 References

WHY IS IT IMPORTANT? - ONLINE DATING

Figure: http://www.cartoonstock.com/newscartoons/cartoonists/bst/lowres/dating-wrong-conversations-arguments-issuesdisagree-bstn86l.jpg

STOCHASTIC *k*-SET PACKING

STOCHASTIC KNAPSACK PROBLEM

- Classical Knapsack
 - ► *n* items
 - Item *i* has size s_i and profit v_i
 - ► Knapsack capacity W
 - Goal: Compute the max profit feasible subset S
- Stochastic Knapsack
 - ► *s_i* are independent random variables with known distribution
 - Goal: Find a policy such that the expected weight of the inserted items is maximized
 - Caveat: Stop when knapsack overflows

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	0000000	

Adaptive and Non-Adaptive policies

- Non-adaptive policy
 - An ordering $\mathcal{O} = \{i_1, i_2, \dots, i_n\}$ of items
 - NON-ADAPT(I) = max_{\mathcal{O}} $\mathbb{E}[val(\mathcal{O})]$
 - Optimal $\mathcal{O} = \{1, 2, 3\}, \mathbb{E}[val(\mathcal{O})] = 1.5$
- Adaptive policy
 - Function $\mathcal{P}: 2^{[n]} \times [0,1] \rightarrow [n]$
 - ► Given a set of inserted items J and remaining capacity c, P(J, c) is the next item to insert
 - ADAPT(I) = max_{\mathcal{P}} $\mathbb{E}[val(\mathcal{P}(\emptyset, 1))]$
 - Optimal expected value = 1.75

Item	Size distribution				
	S	р	\$	р	
1	0.2	1/2	0.6	1/2	
2	0.8	1	-	-	
3	0.4	1/2	0.9	1/2	

INTRODUCTION	Background	STOCHASTIC <i>k</i> -set packing
00000000	○○●	0000000

References

Adaptivity Gap

For an instance *I*,

ADAPTIVITY-GAP
$$(I) = \sup \frac{\text{ADAPT}(I)}{\text{NON-ADAPT}(I)}$$

- ► Studied by Dean, Goemans, and Vondrák [2005].
- They show that for *d*-dimensional knapsack, the gap can be $\Omega(\sqrt{d})$.
- ► They also give a non-adaptive *O*(*d*) approximation to the optimal adaptive.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

PRELIMINARIES – STOCHASTIC *k*-set packing

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

PRELIMINARIES – STOCHASTIC *k*-set packing

An instance I consists of

► *n* items/columns

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

PRELIMINARIES – STOCHASTIC k-SET PACKING

- ► *n* items/columns
- ▶ Item *i* has random profit $v_i \in \mathbb{R}_+$, and a random *d*-dimensional size $s_i \in \{0, 1\}^d$

INTRODUCTION B.	ACKGROUND	STOCHASTIC k-SET PACKING	References
0000000 0	000	000000	

PRELIMINARIES – STOCHASTIC *k*-set packing

- ► *n* items/columns
- ▶ Item *i* has random profit $v_i \in \mathbb{R}_+$, and a random *d*-dimensional size $s_i \in \{0, 1\}^d$
- ► The probability distributions of different items are independent

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

PRELIMINARIES – STOCHASTIC k-SET PACKING

- ► *n* items/columns
- ▶ Item *i* has random profit $v_i \in \mathbb{R}_+$, and a random *d*-dimensional size $s_i \in \{0, 1\}^d$
- ► The probability distributions of different items are independent
- ► Each item takes non-zero size in at most *k* co-ordinates (out of *d*)

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

PRELIMINARIES – STOCHASTIC *k*-set packing

- ► *n* items/columns
- ▶ Item *i* has random profit $v_i \in \mathbb{R}_+$, and a random *d*-dimensional size $s_i \in \{0, 1\}^d$
- ► The probability distributions of different items are independent
- ► Each item takes non-zero size in at most *k* co-ordinates (out of *d*)
- ► A capacity vector $b \in \mathbb{Z}_+$ into which the items must be packed

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

PRELIMINARIES – STOCHASTIC *k*-set packing

- ► *n* items/columns
- ▶ Item *i* has random profit $v_i \in \mathbb{R}_+$, and a random *d*-dimensional size $s_i \in \{0, 1\}^d$
- ► The probability distributions of different items are independent
- ► Each item takes non-zero size in at most *k* co-ordinates (out of *d*)
- ► A capacity vector $b \in \mathbb{Z}_+$ into which the items must be packed
- Goal: Find an adaptive strategy of choosing items such that the expected profit is maximized

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

Let $w_i = \mathbb{E}[v_i]$ be the mean profit, for each $i \in [n]$.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

Let $w_i = \mathbb{E}[v_i]$ be the mean profit, for each $i \in [n]$. Let $\mu_i(j) = \mathbb{E}[s_i(j)]$ be the expected size of the *i*-th item in *j*-th co-ordinate.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	Reference
0000000	000	000000	

Let $w_i = \mathbb{E}[v_i]$ be the mean profit, for each $i \in [n]$. Let $\mu_i(j) = \mathbb{E}[s_i(j)]$ be the expected size of the *i*-th item in *j*-th co-ordinate.

maximize
$$\sum_{i=1}^{n} w_i y_i$$
 (1)

subject to
$$\sum_{i=1}^{n} \mu_i(j) y_i \le b_j, \forall j \in [d]$$
 (2)

$$y_i \in [0,1]$$
 , $\forall i \in [n]$ (3)

 y_i is the probability that the adaptive algorithm probes item *i*.

 INTRODUCTION
 BACKGROUND
 STOCHASTIC k-SET PACKING

 00000000
 000
 000
 000

References

A SOLUTION POLICY

• Let y^* denote an optimal solution to the linear program in 1.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	Re
0000000	000	000000	

- Let y^* denote an optimal solution to the linear program in 1.
- Fix a constant $\alpha \geq 1$ (to be specified later).

- Let y^* denote an optimal solution to the linear program in 1.
- Fix a constant $\alpha \geq 1$ (to be specified later).
- ▶ Pick a permutation $\pi : [n] \rightarrow [n]$ uniformly at random.

- Let y^* denote an optimal solution to the linear program in 1.
- Fix a constant $\alpha \ge 1$ (to be specified later).
- Pick a permutation $\pi : [n] \rightarrow [n]$ uniformly at random.
- Inspect items/columns in the order of π .

- Let y^* denote an optimal solution to the linear program in 1.
- Fix a constant $\alpha \ge 1$ (to be specified later).
- Pick a permutation $\pi : [n] \rightarrow [n]$ uniformly at random.
- Inspect items/columns in the order of π .
- Probe item *c* with probability y_c/α if and only if it is safe to do so.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

APPROXIMATION RATIO

For any column $c \in [n]$, let $\{I_{c,l}\}_{l=1}^k$ denote the indicator random variable that the *l*-th constraint in the support of *c* is tight when *c* is considered in π .

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

APPROXIMATION RATIO

For any column $c \in [n]$, let $\{I_{c,l}\}_{l=1}^k$ denote the indicator random variable that the *l*-th constraint in the support of *c* is tight when *c* is considered in π . Pr[*c* is safe when considered] = Pr[$\wedge_{l=1}^k \neg I_{c,l}$] $\geq 1 - \sum_{l=1}^k \Pr[I_{c,l}]$

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

APPROXIMATION RATIO

For any column $c \in [n]$, let $\{I_{c,l}\}_{l=1}^k$ denote the indicator random variable that the *l*-th constraint in the support of *c* is tight when *c* is considered in π . Pr[*c* is safe when considered] = Pr[$\wedge_{l=1}^k \neg I_{c,l}$] $\geq 1 - \sum_{l=1}^k \Pr[I_{c,l}]$

Lemma

$$\Pr[I_{c,l}] \leq \frac{1}{2\alpha}$$

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	0000000	

Let $j \in [d]$ be the *l*-th constraint in the support of *c*.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	0000000	

Let $j \in [d]$ be the *l*-th constraint in the support of *c*. Let U_c^j denote the usage of constraint *j*, when *c* is considered.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	0000000	

Let $j \in [d]$ be the *l*-th constraint in the support of *c*. Let U_c^j denote the usage of constraint *j*, when *c* is considered.

$$\mathbb{E}[U_c^j] = \sum_{a=1}^n \Pr[\text{column } a \text{ appears before } c \text{ AND } a \text{ is probed}]\mu_a(j)$$

$$\leq \sum_{a=1}^n \Pr[\text{column } a \text{ appears before } c]\frac{y_a}{\alpha}\mu_a(j)$$

$$= \sum_{a=1}^n \frac{y_a}{2\alpha}\mu_a(j)$$

$$\leq \frac{b_j}{2\alpha}$$

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	0000000	

Let $j \in [d]$ be the *l*-th constraint in the support of *c*. Let U_c^j denote the usage of constraint *j*, when *c* is considered.

$$\mathbb{E}[U_c^j] = \sum_{a=1}^n \Pr[\text{column } a \text{ appears before } c \text{ AND } a \text{ is probed}]\mu_a(j)$$

$$\leq \sum_{a=1}^n \Pr[\text{column } a \text{ appears before } c]\frac{y_a}{\alpha}\mu_a(j)$$

$$= \sum_{a=1}^n \frac{y_a}{2\alpha}\mu_a(j)$$

$$\leq \frac{b_j}{2\alpha}$$

Since $I_{c,l} = \{U_c^j \ge b_j\}$, by Markov's inequality, $\Pr[I_{c,l}] \le \frac{\mathbb{E}[U_c^j]}{b_l} \le \frac{1}{2\alpha}$.

INTRODUCTION 00000000	Background 000	STOCHASTIC k-SET PACKING 000000	References

► By union bound, the probability that a particular column *c* is safe when considered under π is at least $1 - \frac{k}{2\alpha}$.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	0000000	

- ► By union bound, the probability that a particular column *c* is safe when considered under π is at least $1 \frac{k}{2\alpha}$.
- The probability of probing *c* is at least $\frac{y_c}{\alpha}(1-\frac{k}{2\alpha})$.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	0000000	

- ► By union bound, the probability that a particular column *c* is safe when considered under π is at least $1 \frac{k}{2\alpha}$.
- The probability of probing *c* is at least $\frac{y_c}{\alpha}(1 \frac{k}{2\alpha})$.
- By linearity of expectation, the expected profit is at least $\frac{1}{\alpha}(1-\frac{k}{2\alpha})\sum_{c=1}^{n}w_{c}y_{c}$.

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	0000000	

- ► By union bound, the probability that a particular column *c* is safe when considered under π is at least $1 \frac{k}{2\alpha}$.
- The probability of probing *c* is at least $\frac{y_c}{\alpha}(1-\frac{k}{2\alpha})$.
- By linearity of expectation, the expected profit is at least $\frac{1}{\alpha}(1-\frac{k}{2\alpha})\sum_{c=1}^{n}w_{c}y_{c}$.
- Setting $\alpha = k$ implies an approximation ratio of 2k.

INTRODUCTION	Background	STOCHASTIC <i>k</i> -set packing	References
00000000	000	○○○○○○●	

Related Work

- Stochastic Knapsack Dean, Goemans, and Vondrák [2008]
 - A non-adaptive 4 approximation to the optimal adaptive
 - A adaptive $(3 + \varepsilon)$ approximation to the optimal adaptive

INTRODUCTION	BACKGROUND	STOCHASTIC k-SET PACKING	References
0000000	000	000000	

Related Work

- Stochastic Knapsack Dean, Goemans, and Vondrák [2008]
 - A non-adaptive 4 approximation to the optimal adaptive
 - A adaptive $(3 + \varepsilon)$ approximation to the optimal adaptive
- ► Stochastic k-Set Packing Bansal et al. [2010]
 - ► 2*k* approximation in the general case
 - k + 1 approximation in the monotone outcome case

INTRODUCTION 00000000	Background 000	STOCHASTIC k-SET PACKING ○○○○○○●	References

Related Work

- Stochastic Knapsack Dean, Goemans, and Vondrák [2008]
 - ► A non-adaptive 4 approximation to the optimal adaptive
 - A adaptive $(3 + \varepsilon)$ approximation to the optimal adaptive
- ► Stochastic k-Set Packing Bansal et al. [2010]
 - ► 2*k* approximation in the general case
 - k + 1 approximation in the monotone outcome case
- Stochastic Matching in graphs (with patience constraints) Bansal et al. [2010]
 - 3 approximation for bipartite graphs
 - 4 approximation for general graphs
- ► Matching in *k*-uniform hypergraph Chan and Lau [2012]
 - (k 1 + 1/k) approximation in the deterministic case
 - ▶ The standard LP has an integrality gap of (k 1 + 1/k) Füredi, Kahn, and Seymour [1993]

References

- Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri Rudra. When lp is the cure for your matching woes: Improved bounds for stochastic matchings. In *Algorithms–ESA 2010*, pages 218–229. Springer, 2010.
- Yuk Hei Chan and Lap Chi Lau. On linear and semidefinite programming relaxations for hypergraph matching. *Mathematical programming*, 135(1-2): 123–148, 2012.
- Ning Chen, Nicole Immorlica, Anna R Karlin, Mohammad Mahdian, and Atri Rudra. Approximating matches made in heaven. *Automata, Languages and Programming*, pages 266–278, 2009.
- Brian C Dean, Michel X Goemans, and Jan Vondrák. Adaptivity and approximation for stochastic packing problems. In *Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms*, pages 395–404. Society for Industrial and Applied Mathematics, 2005.
- Brian C Dean, Michel X Goemans, and Jan Vondrák. Approximating the stochastic knapsack problem: The benefit of adaptivity. *Mathematics of Operations Research*, 33(4):945–964, 2008.
- Zoltán Füredi, Jeff Kahn, and Paul D. Seymour. On the fractional matching polytope of a hypergraph. *Combinatorica*, 13(2):167–180, 1993.