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MATCHING

Definition
Given a (hyper)graph G(V,E) a matching or independent edge set is a subset of
E such that no two of them have a vertex in common.

Figure: http://en.wikipedia.org/wiki/File:Maximum-matching-labels.svg
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MATCHING

Resource allocation

Figure: http://www.phdcomics.com/comics/archive/phd051908s.gif



INTRODUCTION BACKGROUND STOCHASTIC k-SET PACKING References

MATCHING

Stable Marriage Problem

Stable Marriage
Consider a set of n women and n men.
Each person has an ordered list of some members 
of the opposite sex as his or her preference list. 
Let µ be a matching between women and men. 
A pair (m, w) is a blocking pair if both m and w
prefer being together to their assignments 
under µ. Also, (x, x) is a blocking pair, if x prefers 
being single to his/her assignment under µ.
A matching is stable if it does not have any 
blocking pair.
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Figure: http://cramton.umd.edu/econ415/deferred-acceptance-algorithm.pdf
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MATCHING

Latin Square Problem

Figure: http://upload.wikimedia.org/wikipedia/commons/thumb/3/31/Sudoku-by-L2G-20050714 solution.svg/250px-Sudoku-by-
L2G-20050714 solution.svg.png
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STOCHASTIC MATCHING

Setting:
I Each edge e is present independently with probability pe.
I Objective: Maximum matching in graph given pe ∀e ∈ E.
I We don’t know whether edge is present or not - just the probability.
I To find, query the edge, and if the edge is present, add it to matching –

“probing” of edge.
I Task: Adaptively query the edge to maximize the expected matching

weight.
I First introduced and studied by Chen, Immorlica, Karlin, Mahdian, and

Rudra [2009].
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WHY IS IT IMPORTANT?

Motivated by:
I Kidney exchange
I Online dating
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WHY IS IT IMPORTANT? - KIDNEY EXCHANGE

Figure: http://www.cartoonstock.com/lowres/animals-transplant-pig-kidney-transplantation-surgeon-dro0315l.jpg
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WHY IS IT IMPORTANT? - ONLINE DATING

Figure: http://www.cartoonstock.com/newscartoons/cartoonists/bst/lowres/dating-wrong-conversations-arguments-issues-
disagree-bstn86l.jpg



INTRODUCTION BACKGROUND STOCHASTIC k-SET PACKING References

STOCHASTIC KNAPSACK PROBLEM

I Classical Knapsack
I n items
I Item i has size si and profit vi
I Knapsack capacity W
I Goal: Compute the max profit feasible

subset S
I Stochastic Knapsack

I si are independent random variables with
known distribution

I Goal: Find a policy such that the
expected weight of the inserted items is
maximized

I Caveat: Stop when knapsack overflows
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ADAPTIVE AND NON-ADAPTIVE POLICIES

I Non-adaptive policy
I An orderingO = {i1, i2, . . . , in} of items
I NON-ADAPT(I) = maxO E[val(O)]
I OptimalO = {1, 2, 3},E[val(O)] = 1.5

I Adaptive policy
I Function P : 2[n] × [0, 1]→ [n]
I Given a set of inserted items J and

remaining capacity c, P(J, c) is the next
item to insert

I ADAPT(I) = maxP E[val(P(∅, 1))]
I Optimal expected value = 1.75
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ADAPTIVITY GAP

For an instance I,

ADAPTIVITY-GAP(I) = sup
ADAPT(I)

NON-ADAPT(I)

I Studied by Dean, Goemans, and Vondrák [2005].

I They show that for d-dimensional knapsack, the gap can be Ω(
√

d).
I They also give a non-adaptive O(d) approximation to the optimal

adaptive.
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PRELIMINARIES – STOCHASTIC k-SET PACKING

An instance I consists of

I n items/columns
I Item i has random profit vi ∈ R+, and a random d-dimensional size

si ∈ {0, 1}d

I The probability distributions of different items are independent
I Each item takes non-zero size in at most k co-ordinates (out of d)
I A capacity vector b ∈ Z+ into which the items must be packed
I Goal: Find an adaptive strategy of choosing items such that the

expected profit is maximized
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LP RELAXATION FOR OPTIMAL ADAPTIVE (BANSAL ET AL. [2010])

Let wi = E[vi] be the mean profit, for each i ∈ [n].
Let µi(j) = E[si(j)] be the expected size of the i-th item in j-th co-ordinate.

maximize
n∑

i=1

wiyi (1)

subject to
n∑

i=1

µi(j)yi ≤ bj, ∀j ∈ [d] (2)

yi ∈ [0, 1] , ∀i ∈ [n] (3)

yi is the probability that the adaptive algorithm probes item i.
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A SOLUTION POLICY

I Let y∗ denote an optimal solution to the linear program in 1.

I Fix a constant α ≥ 1 (to be specified later).
I Pick a permutation π : [n]→ [n] uniformly at random.
I Inspect items/columns in the order of π.
I Probe item c with probability yc/α if and only if it is safe to do so.
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APPROXIMATION RATIO

For any column c ∈ [n], let {Ic,l}k
l=1 denote the indicator random variable that

the l-th constraint in the support of c is tight when c is considered in π.

Pr[c is safe when considered] = Pr[∧k
l=1¬Ic,l] ≥ 1−

∑k
l=1 Pr[Ic,l]

Lemma

Pr[Ic,l] ≤
1

2α
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2k-APPROXIMATION

Let j ∈ [d] be the l-th constraint in the support of c.

Let Uj
c denote the usage of constraint j, when c is considered.

E[Uj
c] =

n∑
a=1

Pr[column a appears before c AND a is probed]µa(j)

≤
n∑

a=1

Pr[column a appears before c]
ya

α
µa(j)

=

n∑
a=1

ya

2α
µa(j)

≤
bj

2α

Since Ic,l = {Uj
c ≥ bj}, by Markov’s inequality, Pr[Ic,l] ≤ E[Uj

c]
bj
≤ 1

2α .
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2k-APPROXIMATION

I By union bound, the probability that a particular column c is safe when
considered under π is at least 1− k

2α .

I The probability of probing c is atleast yc
α

(1− k
2α ).

I By linearity of expectation, the expected profit is at least
1
α

(1− k
2α )

∑n
c=1 wcyc.

I Setting α = k implies an approximation ratio of 2k.
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I A non-adaptive 4 approximation to the optimal adaptive
I A adaptive (3 + ε) approximation to the optimal adaptive

I Stochastic k-Set Packing – Bansal et al. [2010]
I 2k approximation in the general case
I k + 1 approximation in the monotone outcome case

I Stochastic Matching in graphs (with patience constraints) – Bansal et al.
[2010]

I 3 approximation for bipartite graphs
I 4 approximation for general graphs

I Matching in k-uniform hypergraph – Chan and Lau [2012]
I (k− 1 + 1/k) approximation in the deterministic case
I The standard LP has an integrality gap of (k− 1 + 1/k) – Füredi, Kahn, and
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