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Variational Inequality

The VI Problem
The VI Problem

• Given a set K ⊆ Rn and a mapping F : K → Rn, the VI problem

VI(K,F) is to find a vector x? ∈ K such that

(y − x?)
T

F (x?) ≥ 0 ∀y ∈ K.

• Let SOL(K,F) denote the solution set of VI(K,F).
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Variational Inequality

Why do We Care?

I In general games are hard to solve.
I Potential Games with convex potential functions are

exceptions.
I But we don’t really care about potential functions.
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Variational Inequality

Why do We Care?

I The gradient of potential function gives marginal utilities for a
game.

I I.e., how do utilities at a point vary with player’s strategy at a
point.

I Jacobian of the gradient is called Hessian.
I Convex potential games are interesting because Hessian of a

convex function is a symmetric positive definite matrix. Such
games and associated functions have very nice properties.
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Variational Inequality

Why do We Care?

I It turns out that we don’t need symmetry of the Hessian.
I When we relax this condition, the variation of utilities can no

longer be captured by a single potential function.
I However, as long as Jacobian of marginal utilities is positive

semi-definite, all the nice properties of convex potential games
are maintained.

I Equilibria of games can be represented (and solved) by
Monotone Variational Inequalities.

I We use this fact to generalize results for an important market
model.

I Later half of this presentation.
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Variational Inequality

Geometrical Interpretation
Geometrical Interpretation of the VI

• A feasible point x? that is a solution of the VI(K,F): F(x?) forms

an acute angle with all the feasible vectors y − x?

feasible set K

x⋆·
F(x⋆)

·y
y − x⋆
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Variational Inequality

Convex Optimization as a VI
Convex Optimization as a VI

• Convex optimization problem:

minimize
x

f(x)

subject to x ∈ K

where K ⊆ Rn is a convex set and f : Rn→ R is a convex function.

• Minimum principle: The problem above is equivalent to finding a

point x? ∈ K such that

(y − x?)
T ∇f (x?) ≥ 0 ∀y ∈ K ⇐⇒ VI(K,∇f)

which is a special case of VI with F = ∇f .
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Variational Inequality

VI’s are More General

• It seems that a VI is more general than a convex optimization

problem only when F 6= ∇f .

• But is it really that significative? The answer is affirmative.

• The VI(K,F) encompasses a wider range of problems than clas-

sical optimization whenever F 6= ∇f (⇔ F has not a symmetric

Jacobian).

• Some examples of relevant problems that can be cast as a VI in-

clude NEPs, GNEPs, system of equations, nonlinear complementary

problems, fixed-point problems, saddle-point problems, etc.
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Variational Inequality

Special Cases

System of Equations
System of Equations as a VI

• In some engineering problems, we may not want to minimize a

function but instead finding a solution to a system of equations:

F(x) = 0.

• This can be cast as a VI by choosing K = Rn.

• Hence,

F(x) = 0 ⇐⇒ VI(Rn,F).
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Variational Inequality

Special Cases

Non-linear Complementarity Problem
Nonlinear Complementary Problem (NCP) as a VI

• The NCP is a unifying mathematical framework that includes linear

programming, quadratic programming, and bi-matrix games.

• The NCP(F) is to find a vector x? such that

NCP(F) : 0 ≤ x? ⊥ F(x?) ≥ 0.

• An NCP can be cast as a VI by choosing K = Rn+:

NCP(F) ⇐⇒ VI(Rn+,F).
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Variational Inequality

Alternative Formulations

KKT Conditions
Alternative Formulations of VI: KKT Conditions

• Suppose that the (convex) feasible set K of VI(K,F) is described

by a set of inequalities and equalities

K = {x : g (x) ≤ 0, h (x) = 0}

and some constraint qualification holds.

• Then VI(K,F) is equivalent to its KKT conditions:

0 = F (x) +∇g (x)
T
λ+∇h (x)

T
ν

0 ≤ λ⊥g (x) ≤ 0

0 = h (x) .
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Variational Inequality

Alternative Formulations

KKT Conditions

• To derive the KKT conditions it suffices to realize that if x is

a solution to VI(K,F) then it must solve the following convex

optimization problem and vice-versa:

minimize
y

yTF (x?)

subject to y ∈ K.

(Otherwise, there would be a point y with yTF (x?) < x?TF (x?)

which would imply (y − x?)
T

F (x?) < 0.)

• The KKT conditions of the VI follow from the KKT conditions of

this problem noting that the gradient of the objective is F (x?).
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Variational Inequality

Alternative Formulations

Primal-Dual RepresentationAlternative Formulations of VI: Primal-Dual
Representation

• We can now capitalize on the KKT conditions of VI(K,F) to derive

an alternative representation of the VI involving not only the primal

variable x but also the dual variables λ and ν.

• Consider VI(K̃, F̃) with K̃ = Rn × Rm+ × Rp and

F̃ (x,λ,ν) =




F(x) +∇g (x)
T
λ+∇h (x)

T
ν

−g (x)

h (x)


 .

• The KKT conditions of VI(K̃, F̃) coincide with those of VI(K,F).

Hence, both VIs are equivalent.
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Variational Inequality

Alternative Formulations

Primal-Dual Representation

• VI(K,F) is the original (primal) representation whereas VI(K̃, F̃) is

the so-called primal-dual form as it makes explicit both primal and

dual variables.

• In fact, this primal-dual form is the VI representation of the KKT

conditions of the original VI.

• The primal-dual form is useful to study GNEPs with shared con-

straints.
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Variational Inequality

Monotonicity of F

Monotonicity is Like Convexity
Monotonicity Properties of F: Outline

• Monotonicity properties of vector functions.

• Convex programming - a special case: monotonicity properties are

satisfied immediately by gradient maps of convex functions.

• In a sense, role of monotonicity in VIs is similar to that of convexity

in optimization.

• Existence (uniqueness) of solutions of VIs and convexity of solution

sets under monotonicity properties.
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Variational Inequality

Monotonicity of F

Definitions
Monotonicity Properties of F (I)

• A mapping F : K→Rn is said to be

(i) monotone on K if

( x− y )T ( F(x)− F(y) ) ≥ 0, ∀x,y ∈ K
(ii) strictly monotone on K if

( x− y )T ( F(x)− F(y) ) > 0, ∀x,y ∈ K and x 6= y

(iii) strongly monotone on Q if there exists constant csm > 0 such

that

( x− y )T ( F(x)− F(y) ) ≥ csm ‖x− y ‖2, ∀x,y ∈ K

The constant csm is called strong monotonicity constant.
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Monotonicity of F

Examples
Monotonicity Properties of F (II)

• Example of (a) monotone, (b) strictly monotone, and (c) strongly

monotone functions:

F (x)

x

(c)
x

(b)

F (x)

x

(a)

F (x)
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Monotonicity of F

Monotonicity of Gradient and Convexity
Monotonicity Properties of F (IV)

• If F = ∇f , the monotonicity properties can be related to the

convexity properties of f

a) f convex ⇔ ∇f monotone ⇔ ∇2f � 0

b) f strictly convex ⇔ ∇f strictly monotone ⇐ ∇2f � 0

c) f strongly convex ⇔ ∇f strongly monotone ⇔ ∇2f − c I � 0

x

f ′(x)

x

f(x)

x

f ′(x)

f(x)

x

f ′(x)

x

f(x)

x
(a) (b) (c)

(d) (e)
(f)

x y

·

·

S
f(x)

f(y)
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Monotonicity of F

Why are Monotone Mappings Important
Why Are Monotone Mappings Important?

• Arise from important classes of optimization/game-theoretic prob-

lems.

• Can articulate existence/uniqueness statements for such problems

and VIs.

• Convergence properties of algorithms may sometimes (but not al-

ways) be restricted to such monotone problems.
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A Simple Algorithm for Monotone VI’s

Projection Algorithm
I If F were gradient of a convex function, it would be the same

as gradient descent.Basic Projection Method

Algorithm 1: Projection algorithm with constant step-size

(S.0) : Choose any x(0) ∈ K, and the step size τ > 0; set n = 0.

(S.1) : If x(n) =
∏
K

(
x(n) − F(x(n))

)
, then: STOP.

(S.2) : Compute

x(n+1) =
∏
K

(
x(n) − τ F(x(n))

)
.

(S.3) : Set n← n+ 1; go to (S.1).

• In order to ensure the convergence of the sequence
{
x(n+1)

}∞
n=0

(or

a subsequence) to a fixed point of Φ, one needs some conditions of

the mapping F and the step size τ > 0. (Note that instead of a

scalar step size, one can also use a positive definite matrix.)
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A Simple Algorithm for Monotone VI’s

Convergence
Basic Projection Method: Convergence Conditions
• Theorem. Let F : K → Rn, where K ⊆ Rn is closed and convex.

Suppose F is strongly monotone and Lipschitz continuous on K:
∀x,y ∈ K,

(x− y)T (F(x)− F(y)) ≥ cF‖x− y‖2, and ‖F(x)− F(y)‖ ≤ LF ‖x− y‖

and let
0 < τ <

2cF
L2

F

.

Then, the mapping
∏
K

(
x(n) − τF(x(n))

)
is a contraction in the

Euclidean norm with contraction factor

η = 1− L2
F τ

(
2cF
L2

F

− τ
)
.

Therefore, any sequence
{
x(n)

}∞
n=0

generated by Algorithm 1

converges linearly to the unique solution of the VI(K,F).
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Model: Classical Cournot Competition

Classical Model of Cournot Competition

I Introduced by Antoine Cournot in 1838.
I All firms produce a homogeneous product.
I All the production is sold in the market.
I The market price is a function of total supply and is fixed for

all firms.
I Firms have a cost function for the quantity they produce.
I Quantity is the strategic variable.
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Model: Classical Cournot Competition

Cournot Oligopoly

I Single good produced by n firms.
I Cost for firm i for producing qi units: Ci (qi ), where Ci is

nonnegative and increasing
I If firms’ total output is Q then market price is P(Q),
I P is nonincreasing
I Profit of firm i , as a function of all the firms’ outputs:
πi (q1, ..., qn) = qiP(Q)− Ci (qi )
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Model: Classical Cournot Competition

Cournot Oligopoly : Example
I Two firms.
I Inverse demand: P(Q) = max{0, a − bQ}.
I constant unit cost: Ci (qi ) = cqi .
I Utility function : π1(q1, q2) = q1(a − bq1 − bq2)− cq1.
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Model: Classical Cournot Competition

Motivation

Utility Markets

I The distribution network fragments the market, e.g., natural
gas, water and electricity.

I We can assume each firm has access to a subset of existing
submarkets.

I Relations between suppliers and submarkets form a complex
network.

I A market having access to multiple suppliers enjoys a lower
price as a result of the competition.

I Multiple firms competing in multiple markets.
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Model: Classical Cournot Competition

Formal Description of Network Cournot Competition

Notation

I n firms denoted by F that produce a homogeneous good.
I m markets denoted byM.
I A bipartite graph G = (F ,M, E).
I An edge between vertices in the bipartite graph if firm j is able

to produce the good in market i .
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Model: Classical Cournot Competition

Formal Description of Network Cournot Competition

Notation
I Inverse demand (price) functions Pi for market i .

I Function of total quantity produced in that market.
I Cost function cj for for firm j .

I Function of vector of quantities produced by the firm in each
market.

I N(j) is the set of neighbors of a node j in G .
I Revenue of firm j , denoted by Rj , is:

Rj =
∑

i∈N(j)

Pi (Di )qij (1)

I Profit of firm j , denoted by πj , is:

πj = Rj − cj(~sj). (2)
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Model: Classical Cournot Competition

Example of Network Cournot Competition (NCC)

An Example

I Firm i ∈ {A,B} produces quantity qij of the good in market
j ∈ {1, 2}.
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Model: Classical Cournot Competition

Example of Network Cournot Competition (NCC)

An Example

I Let pi (q) = 1− qAi − qBi be the market prices.
I Let ci (q) = 1

2(qi1 + qi2)
2 be the cost of production.

I Profit of firm A in second scenario:
πA(q) = qA1(1− qA1) + qA2(1− qA2 − qB2)− 1

2(qA1 + qA2)
2.
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Model: Classical Cournot Competition

Definition

Cournot Nash Equilibrium

I Quantities produced by firms represent a Cournot-Nash
equilibrium if none of the firms can increase their profits by
unilaterally changing production quantities.
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Model: Classical Cournot Competition

Example cont’d

Example cont’d

Any Nash equilibrium of this game satisfies the set of equations:

Either qA1 = 0 and
∂πA

∂qA1
≤ 0 Or

∂πA

∂qA1
= 0

Either qA2 = 0 and
∂πA

∂qA2
≤ 0 Or

∂πA

∂qA2
= 0

Either qB1 = 0 and
∂πA

∂qB1
≤ 0 Or

∂πA

∂qB1
= 0

Either qB2 = 0 and
∂πA

∂qB2
≤ 0 Or

∂πA

∂qB2
= 0
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