Network Bargaining Games and Cooperative Game Theory

Hamid Mahini University of Maryland

Bargaining

Bargaining

- Common wisdom has it that the whole is more than the sum of the parts.
- Two cooperative agents are often capable of generating a surplus that neither could achieve alone.
 - Trade creates value
 - Music studio, Music band sell an album
 - Publishing house, author print and sell a book
 - Job position
 - Partnership formation

Example

- Bargaining over a division of a cake
- Take-it-or-leave-it rule
 - I offer you a piece.
 - If you accept, we trade.
 - If you reject, no one eats.
- What is the equilibrium?
 - Power to the proposer.

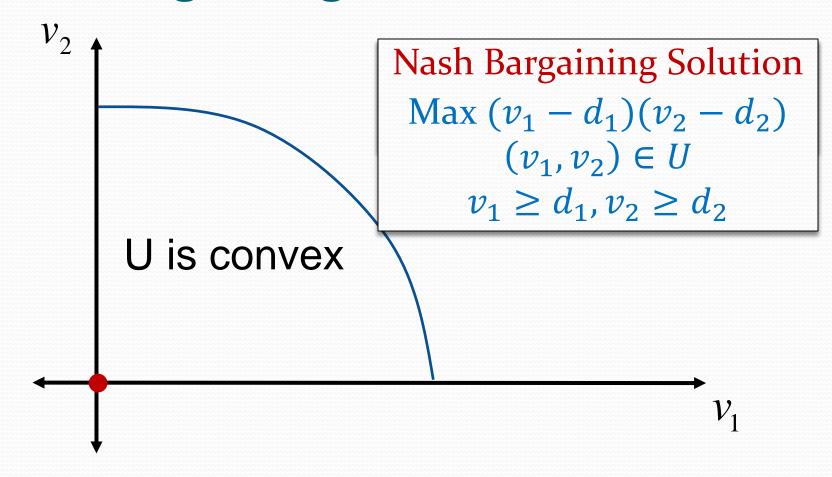
Example

- Bargaining over a division of a cake
- Take-it-or-counteroffer rule
 - I offer you a piece.
 - If you accept, we trade.
 - If you reject, you may counteroffer (and δ of the cake remains, the rest melt)
- What is the equilibrium?

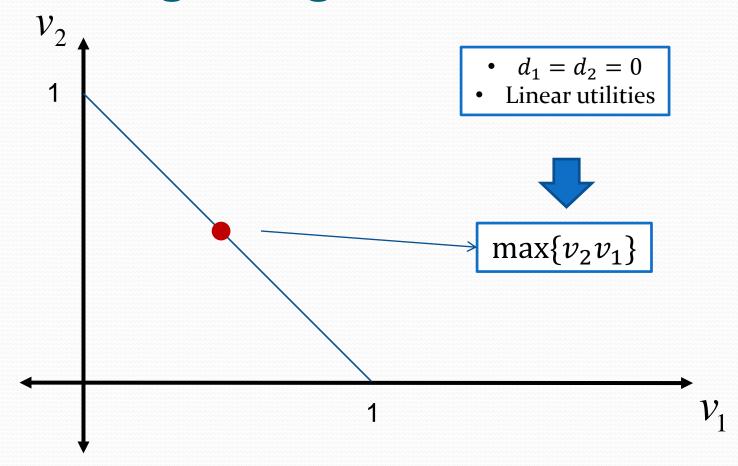
Bargaining

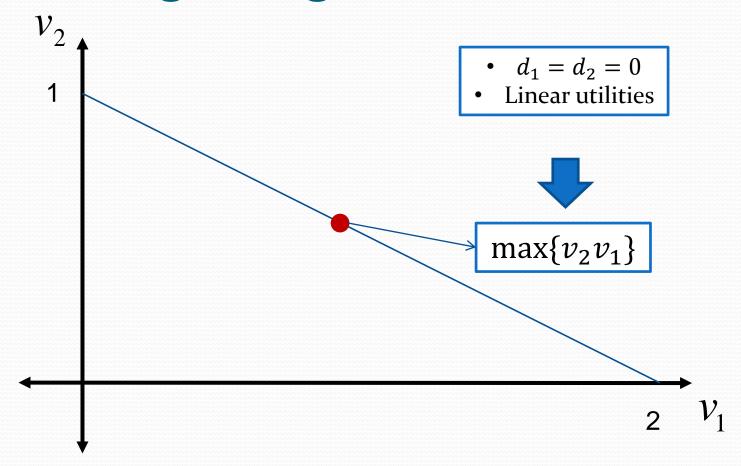
What would be the outcome?

What is the right solution?

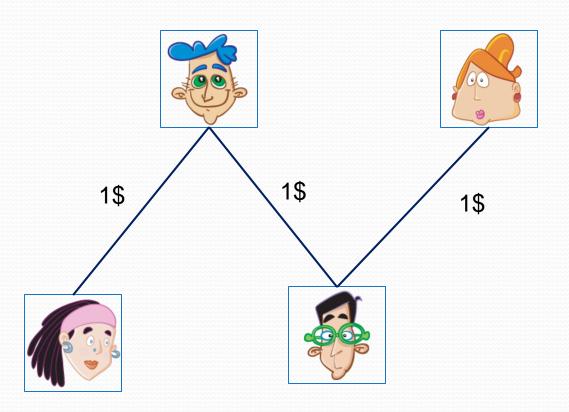


- Pareto Efficiency
 - $\not\exists (v_1, v_2) \in U \text{ s.t. } v \geq f(U, d) \text{ and } \exists i \text{ s.t. } v_i > f_i(U, d)$
- Symmetry
 - If *U* is symmetric and $d_1 = d_2$ then $f_1(U, d) = f_2(U, d)$
- Invariant to Equivalent Payoff Representation
 - Invariant to affine transform
- Independence of Irrelevant Alternatives
 - If $U' \subseteq U$ and $f(U, d) \in U'$ then f(U', d) = f(U, d).

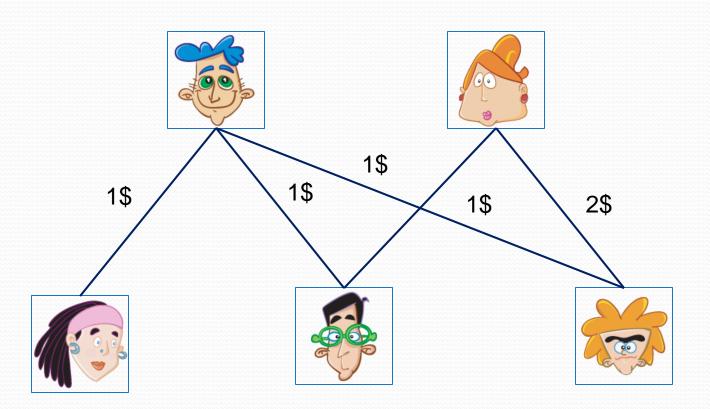




Bargaining Game



Bargaining Game



Bargaining Game

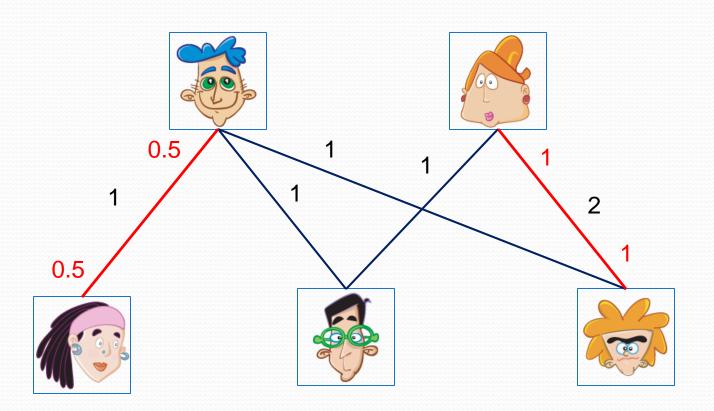
- They are n agents in the market.
- Each agent may participate in at most one contract.
- For each pair of agents i and j we are given weight $w_{i,j}$
 - Representing the surplus of a contract between *i* and *j*

Our main task is to predict the outcome of a network bargaining game.

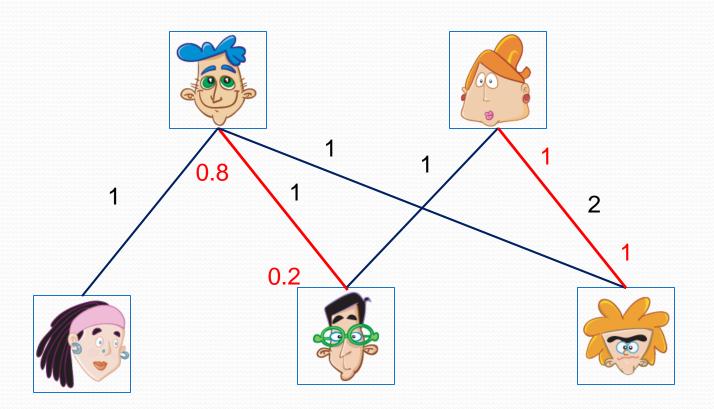
Bargaining Solution

- We call a set of contracts *M* feasible if:
 - Each agent *i* is in at most 1 contract.
- A solution $(\{z_{i,j}\},M)$ of a bargaining game is:
 - A set of feasible contracts *M*.
 - For each (i, j) in $M: z_{i,j} + z_{j,i} = w_{i,j}$
 - z_{i,j} is the amount of money *i* earns from the contract with *j*

Bargaining Solution - Example



Bargaining Solution - Example



Bargaining Solution

- The set of solution is quite large.
- Define a subset of solution as a result of the bargaining process.

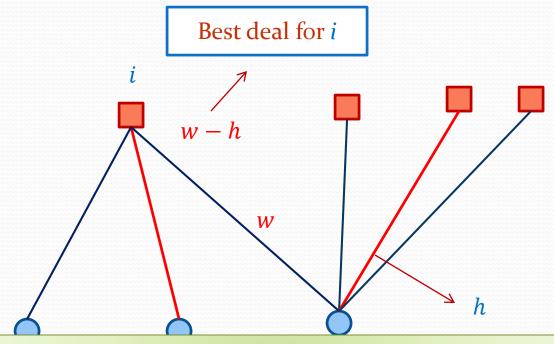
Nash bargaining solution

Cooperative game theory

Goal

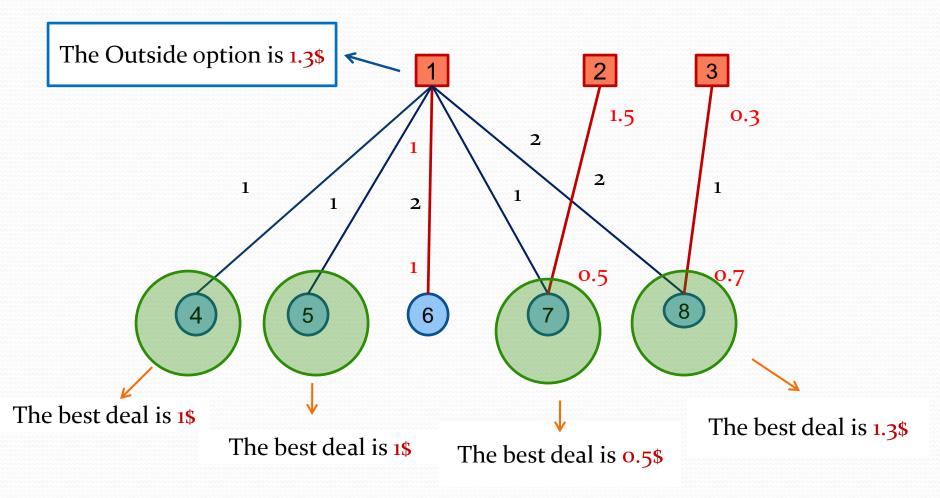
- Nash bargaining solution.
 - Stable
 - Balanced
- Cooperative game theory solutions.
 - Core
 - Kernel
- Connection between these two views.

Outside Option



• The outside option of an agent *i* is the best deal she could make with someone outside the contracting set *M*.

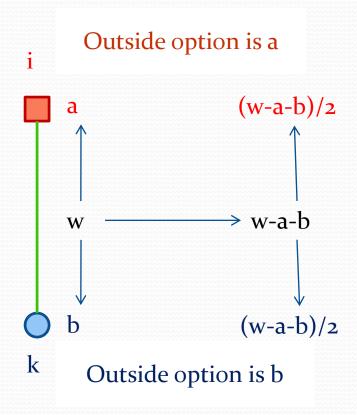
Outside Option



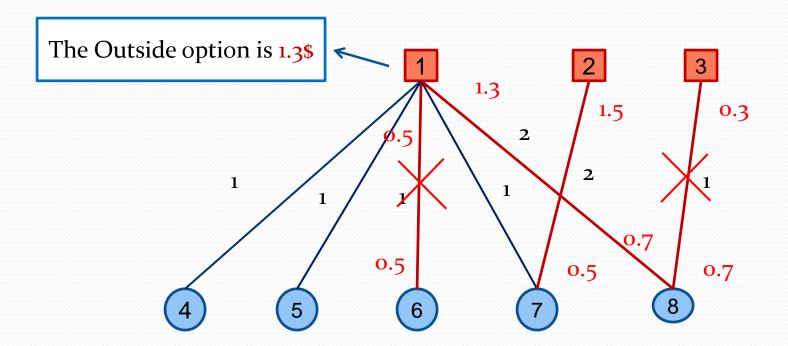
Stable and Balanced Solutions

- A solution is stable if no agent has better outside option.
- Nash additionally argued that agents tend to split surplus equally.
- A solution is balanced if agents split the net surplus equally.
 - Each agent gets its outside option in a contract.
 - Then divide the money on the table equally.

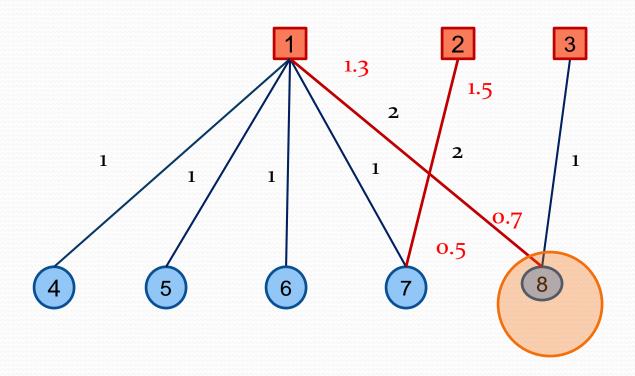
Balanced solution



Stable Solution

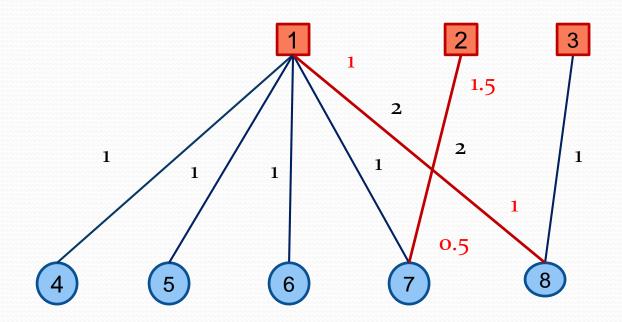


Stable Solution



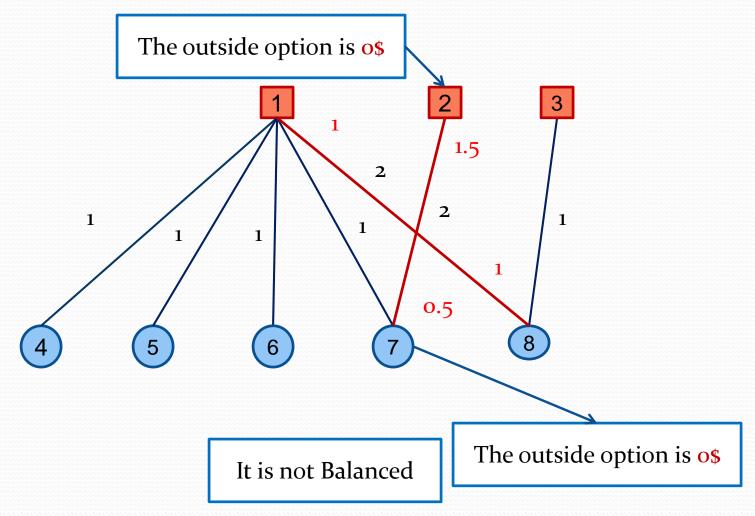
The Outside option is 1 \$

Stable Solution

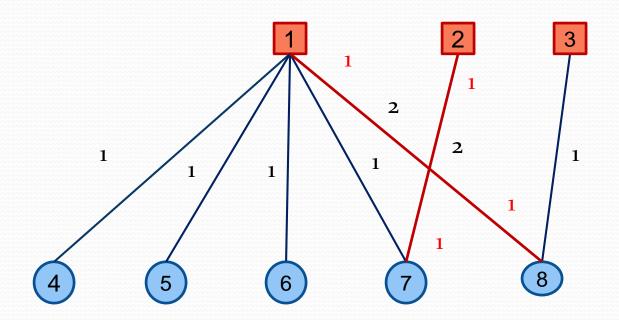


Stable Solution

Balanced Solution



Balanced Solution



Balanced Solution

Cooperative game theory

- A cooperative game is defined by a set of agents *N*.
- A value function $v: 2^N \to R^+ \cup \{0\}$
 - The value of a set of agents represents the surplus they can achieve.
- The goal is to define an outcome of the game $\{x_i\}$

 $v(S) = \text{Maximum value of } \sum_{(i,j)\in M} w_{i,j} \text{ over all feasible contract } M$

Core

- An outcome $\{x_i\}$ is in the core if and only if:
 - Each set of agents should earn in total at least as much as they can achieve alone: $\sum_{i \in S} x_i \ge v(S)$
 - Total surplus of all agents is exactly divided among the agents: $\sum_{i \in \mathbb{N}} x_i = v(N)$

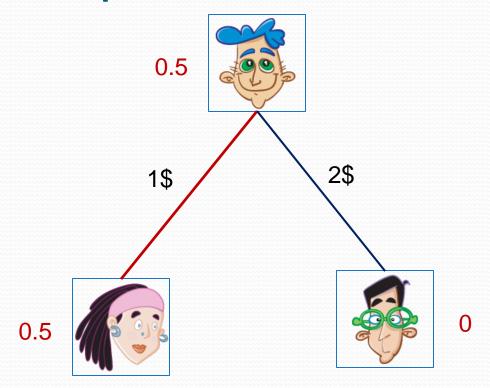
Prekernel

• The power of *i* over *j* is the maximum amount *i* can earn without cooperation with *j*.

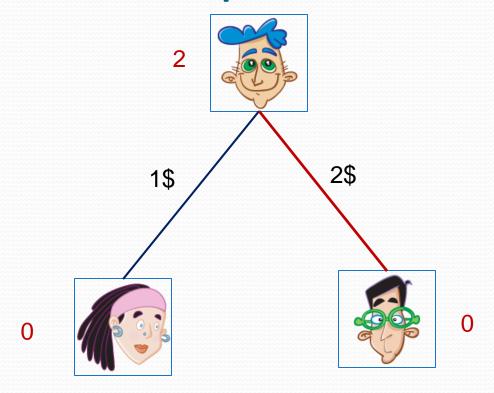
$$s_{ij}(x) = \max \left\{ \nu(S) - \sum_{k \in S} x_k : S \subseteq N, S \ni i, S \not\ni j \right\}$$

Prekernel: power of i over j = power of j over i

Core - example

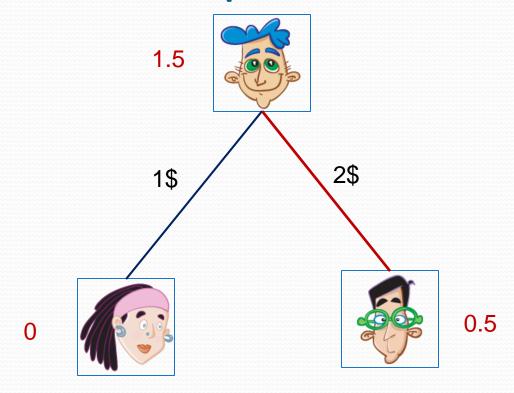


Prekernel - example



$$s_{ij}(x) = \max \left\{ \nu(S) - \sum_{k \in S} x_k : S \subseteq N, S \ni i, S \not\ni j \right\}$$

Prekernel - example



$$s_{ij}(x) = \max \left\{ \nu(S) - \sum_{k \in S} x_k : S \subseteq N, S \ni i, S \not\ni j \right\}$$

Characterizing Stable Solutions

Primal

Maximize $\sum_{ij} w_{ij} x_{ij}$ Subject to $\sum_{j} x_{ij} \leq 1$, $\forall i$ $x_{ij} \geq 0$, $\forall i, j$

Dual

Minimize $\sum_{i} u_{i}$ Subject to $u_{i} + u_{j} \geq w_{ij}$, $\forall i, j$ $u_{i} \geq 0$, $\forall i$

A stable solution \approx a pair of optimum solutions of the above linear programs

Characterizing Stable Solutions

Primal

Maximize $\sum_{ij} w_{ij} x_{ij}$ Subject to $\sum_{j} x_{ij} \leq 1$, $\forall i$ $x_{ij} \geq 0$, $\forall i, j$

Dual

Minimize $\sum_{i} u_{i}$ Subject to $u_{i} + u_{j} \geq w_{ij}$, $\forall i, j$ $u_{i} \geq 0$, $\forall i$

Stable to LP

- given $(\{z_{ij}\}, M)$
- $x_{ij} = 1$ iff $(i,j) \in M$
- $u_i = z_{ij} \text{iff } (i,j) \in M$

Characterizing Stable Solutions

Primal

Maximize $\sum_{ij} w_{ij} x_{ij}$ Subject to $\sum_{j} x_{ij} \leq 1$, $\forall i$ $x_{ij} \geq 0$, $\forall i, j$

Dual

Minimize $\sum_{i} u_{i}$ Subject to $u_{i} + u_{j} \geq w_{ij}$, $\forall i, j$ $u_{i} \geq 0$, $\forall i$

LP to Stable

- given $(\{x_{ij}\}, \{u_i\})$
- $(i,j) \in M \text{ iff } x_{ij} = 1$
- $z_{ij} = u_i$ for all $x_{ij} = 1$

Core = Stable

Stable ⊆ Core

- We use the characterization of stable solutions
- Consider $(\{x_{ij}\}, \{u_i\})$
- Define $x_i = u_i$
- We should prove:
 - $\sum_{i \in \mathbb{N}} x_i = v(N)$
 - $\sum_{i \in R} x_i \ge v(R)$

Core = Stable

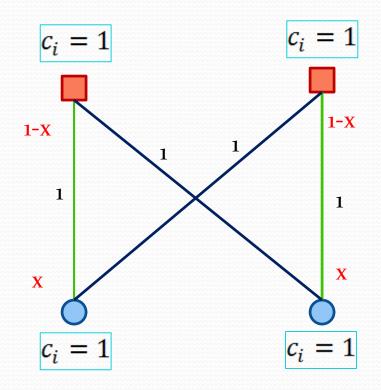
Core ⊆ **Stable**

- Assume $(\{x_i\})$ is in the core.
- Consider an optimal set of contracts *M*
- Set $z_{ij} = x_i$ and $z_{ji} = x_j$ for all $(i, j) \in M$
 - $\sum_{i} x_{i} = v(N) = \text{maximum matching}$
- Set $u_i = x_i$
 - $(\{u_i\})$ is a feasible solution for the dual.

Core ∩ Kernel = Balanced

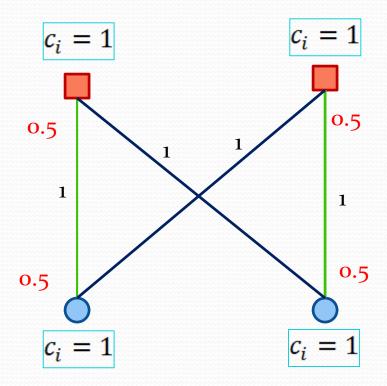
- Assume $(\{x_i\})$ is in the core \cap kernel.
- Construct $(\{z_{ij}\}, M)$ based on the previous approach.
- Define $\hat{s}_{ij} = \alpha_i z_{ij}$
- Prove $s_{ij} = \hat{s}_{ij}$

Stable, Balanced are too large



Stable and Balanced Solution

Unique outcome



The symmetric solution

Unique outcome, Nucleolus

- The excess of s set S is the extra earning of S in $\{x_i\}$.
 - $\epsilon(S) = \sum_{i \in S} x_i \nu(S)$
- Let $\epsilon = (\epsilon_{S_1}, \dots, \epsilon_{S_{2^N}})$ be the vector of excesses sorted in non-decreasing order.
- The nucleolus is unique.
 - It is in the kernel.
 - It is in the core if core is non-empty.
 - Characterized by a set of simple, reasonable axiom.
 - Symmetry