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What is Game Theory?

 Game Theory is about interactions among self-interested agents (players)

 Different agents have different preferences (i.e. like some outcomes more 

than others)

 Note that game theory is not a tool; it is a set of concepts.

 Goals of this course: 

 Formal definitions and technicality of the algorithms

 Better understanding of real-world games



Algorithmic Game Theory

 Algorithm Game Theory is often viewed as “incentive-aware algorithm 

design’’

 Algorithm design often deals with dumb objects though Algorithmic Game 

Theory often deals with smart (self-interested) objects 

 Combines Algorithm Design and Game Theory

 Also known as Mechanism Design

 Goal of Mechanism Design

 Encourage selfish agents to act socially by designing rewarding rules 

such that when agents optimize their own objective, a social objective is 

met



Some Fields where Game Theory is Used

 Economics, business

 Markets, auctions

 Economic predictions

 Bargaining, fair division



Some Fields where Game Theory is Used

 Government, politics, military

 Negotiations

 Voting systems

 International relations 

 War

 …

World War 1

army trench



Some Fields where Game Theory is Used

 Biology, psychology, sociology

 Population ratios, territoriality

 Social behavior

 …



Some Fields where Game Theory is Used

 Engineering, computer science

 Game programs

 Computer and

communication networks 

 Road networks

 …



 A (finite, n-person) normal-form game includes the following:

1. An ordered set N = (1, 2, 3, …, n) of agents or players: 

2. Each agent i has a finite set Ai of possible actions

• An action profile is an n-tuple a = (a1, a2, …, an ), where a1 ∈ A1,  

a2 ∈ A2,  …,  an ∈ An

• The set of all possible action profiles is A = A1×· · ·× An

3. Each agent i has a real-valued utility (or payoff) function

ui (a1, . . . , an ) = i’s payoff if the action profile is (a1, . . . , an )

 Most other game representations

can be reduced to normal form 

 Usually represented by an n-dimensional

payoff (or utility) matrix

 for each action profile, shows the 

utilities of all the agents

Games in Normal Form

take 3 take 1

take 3 3, 3 0, 4

take 1 4, 0 1, 1



The Prisoner’s Dilemma

 Scenario: The police are holding two prisoners

as suspects for committing a crime

 For each prisoner, the police have enough evidence for a 1 year prison sentence

 They want to get enough evidence for a 4 year prison sentence

 They tell each prisoner,

• “If you testify against the other prisoner,

we’ll reduce your prison sentence by 1 year”

 C = Cooperate (with the other prisoner):

refuse to testify against him/her

 D = Defect: testify against the other prisoner

 Both prisoners cooperate => both go to prison for 1 year

 Both prisoners defect => both go to prison for 4 – 1 = 3 years

 One defects, other cooperates => cooperator goes to prison for 4 years; defector 

goes free

C D

C –1, –1 –4, 0

D 0, –4 –3, –3



Prisoner’s Dilemma

 General form:

c > a > d > b

2a > b + c

C D

C a, a b, c

D c, b d, d

C D

C –1, –1 –4, 0

D 0, –4 –3, –3

We used

this:

C D

C 3, 3 0, 5

D 5, 0 1, 1

take 3 take 1

take 3 3, 3 0, 4

take 1 4, 0 1, 1

Equivalent:

Game

theorists

usually

use this:



Utility Functions

 Idea: the preferences of a rational agent must obey some constraints

 Agent’s choices are based on rational preferences

⇒ agent’s behavior is describable as maximization of expected utility

 Constraints:

Orderability (sometimes called Completeness):

(A ≻ B)  ∨ (B ≻ A)  ∨ (A ~ B)

Transitivity:

(A ≻ B)  ∧ (B ≻ C)   ⇒ (A ≻ C)

 Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944).

 Given preferences satisfying the constraints above, there exists a real-

valued function u such that

u(A) ≥ u(B)  ⇔ A ≻ B               (*)

u is called a utility function 



Utility Scales for Games

 Suppose that all the agents have rational preferences, and that this is 

common knowledge* to all of them

 Then games are insensitive to positive affine transformations of one or 

more agents’ payoffs

 Let c and d be constants, c > 0

 For one or more agents i, replace every payoff xij with cxij + d

 The game still models the same sets of rational preferences

a21 a22

a11 x11, x21 x12, x22

a12 x13, x23 x14, x24

a21 a22

a11 cx11+d, x21 cx12+d, x22

a12 cx13+d, x23 cx14+d, x24

a21 a22

a11 cx11+d, ex21+f cx12+d, ex22+f

a12 cx13+d, ex23+f cx14+d, ex24+f

————————

*Common knowledge is a complicated topic; I’ll discuss it later



Common-payoff Games 

 Common-payoff game:

 For every action profile, all agents have the same payoff

 Also called a pure coordination game or a team game

 Need to coordinate on an action that is maximally beneficial to all

 Which side of the road?

 2 people driving toward each other

in a country with no traffic rules 

 Each driver independently decides

whether to stay on the left or the right

 Need to coordinate your action

with the action of the other driver

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



A Brief Digression

 Mechanism design: set up the rules of the game, to give each agent an 

incentive to choose a desired outcome

 E.g., the law says what side of the road to drive on

 Sweden on September 3, 1967:



Zero-sum Games

 These games are purely competitive

 Constant-sum game:

 For every action profile, the sum of the payoffs is the same, i.e.,

 there is a constant c such for every action profile  a = (a1, …, an),

• u1(a) + … + un(a) = c

 Any constant-sum game can be transformed into an equivalent game in 

which the sum of the payoffs is always 0

 Positive affine transformation: subtract c/n from every payoff

 Thus constant-sum games are usually called zero-sum games



Examples

 Matching Pennies

 Two agents, each has a penny

 Each independently chooses

to display Heads or Tails 

• If same, agent 1 gets both pennies

• Otherwise agent 2 gets both pennies

 Penalty kicks in soccer

 A kicker and a goalie

 Kicker can kick left or right

 Goalie can jump to left or right

 Kicker scores if he/she kicks to one

side and goalie jumps to the other

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1



Another Example:Rock-Paper-Scissors



 A game is nonconstant-sum (usually called nonzero-sum)

if there are action profiles a and b such that

• u1(a) + … + un(a)  ≠  u1(b) + … + un(b)

 e.g., the Prisoner’s Dilemma

 Battle of the Sexes

 Two agents need to coordinate their actions, 

but they have different preferences

 Original scenario:

• husband prefers football,

wife prefers opera

 Another scenario:

• Two nations must act together to

deal with an international crisis,

and they prefer different solutions

Nonzero-Sum Games

C D

C 3, 3 0, 5

D 5, 0 1, 1

Husband:

Opera Football

Wife:
Opera 2, 1 0, 0

Football 0, 0 1, 2



Symmetric Games

 In a symmetric game, every agent has

the same actions and payoffs

 If we change which agent is which,

the payoff matrix will stay the same

 For a 2x2 symmetric game,

it doesn’t matter whether agent 1 is

the row player or the column player

 The payoff matrix looks like this:

 In the payoff matrix of a symmetric

game, we only need to display u1

 If you want to know another

agent’s payoff, just interchange

the agent with agent 1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

a1 a2

a1 w, w x, y

a2 y, x z, z

Which side of the road?

a1 a2

a1 w x

a2 y z



Strategies in Normal-Form Games

 Pure strategy: select a single action and play it 

 Each row or column of a payoff matrix represents both an action and a 

pure strategy

 Mixed strategy: randomize over the set of available actions according to 

some probability distribution

 si(aj ) = probability that action aj will be played in mixed strategy si

 The support of si = {actions that have probability > 0 in si}

 A pure strategy is a special case of a mixed strategy 

 support consists of a single action

 A strategy si is fully mixed if its support is Ai

 i.e., nonzero probability for every action available to agent i

 Strategy profile: an n-tuple s = (s1, …, sn) of strategies, one for each agent 



Expected Utility

 A payoff matrix only gives payoffs for pure-strategy profiles

 Generalization to mixed strategies uses expected utility 

 First calculate probability of each outcome,

given the strategy profile (involves all agents) 

 Then calculate average payoff for agent i, weighted by the probabilities

 Given strategy profile s = (s1, …, sn)

• expected utility is the sum, over all action profiles, of the profile’s 

utility times its probability:

i.e.,

   

u
i
s( ) = ui a( )

aÎA

å Pr[a | s]

   

u
i
s1,..., sn( ) = ui a1,...,an( )

(a1 ,...,an )ÎA

å
j=1

n

P s j a j( )



Some Comments about Normal-Form Games

 Only two kinds of strategies in the normal-form game representation:

 Pure strategy: just a single action

 Mixed strategy: probability distribution over pure strategies

• i.e., choose an action at random from the probability distribution

 The normal-form game representation may see very restricted

 No such thing as a conditional strategy

(e.g., cross the bay if the temperature is above 70)

 No temperature or anything else to observe

 However much more complicated games can be mapped into normal-form 

games

 Each pure strategy is a description of what you’ll do in every situation 

you might ever encounter in the game

 In later sessions, we see more examples

C D

C 3, 3 0, 5

D 5, 0 1, 1



How to reason about games?

 In single-agent decision theory, look at an optimal strategy

 Maximize the agent’s expected payoff in its environment 

 With multiple agents, the best strategy depends on others’ choices 

 Deal with this by identifying certain subsets of outcomes called solution 

concepts

 First we discuss two solution concepts:

 Pareto optimality 

 Nash equilibrium

 Later we will discuss several others



Pareto Optimality

 A strategy profile s Pareto dominates a strategy profile s if 

 no agent gets a worse payoff with s than with s,

i.e., ui(s) ≥ ui(s) for all i ,

 at least one agent gets a better payoff with s than with s,

i.e., ui(s) > ui(s) for at least one i

 A strategy profile s is Pareto optimal (or Pareto efficient) if there’s no 

strategy profile s' that Pareto dominates s

 Every game has at least one Pareto optimal profile

 Always at least one Pareto optimal profile in which the strategies are 

pure



C D

C 3, 3 0, 5

D 5, 0 1, 1

Examples

The Prisoner’s Dilemma

 (D,C) is Pareto optimal: no profile gives player 1 a higher payoff

 (C, D) is Pareto optimal: no profile gives player 2 a higher payoff

 (C,C) is Pareto optimal: no profile gives both players a higher payoff

 (D,D) isn’t Pareto optimal: (C,C) Pareto dominates it

Which Side of the Road

 (Left,Left) and (Right,Right) are Pareto optimal

 In common-payoff games, all Pareto optimal

strategy profiles have the same payoffs

 If (Left,Left) had payoffs (2,2), then

(Right,Right) wouldn’t be Pareto optimal

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



Best Response

 Suppose agent i knows how the others are going to play

 Then i has an ordinary optimization problem:

maximize expected utility

 We’ll use s–i to mean a strategy profile for all of the agents except i

s−i = (s1, …, si−1, si+1, …, sn)

 Let si be any strategy for agent i. Then 

(si, s−i ) =  (s1, …, si−1, si, si+1, …, sn)

 si is a best response to s−i if for every strategy si available to agent i,

ui (si , s−i )  ≥  ui (si, s−i )

 There is always at least one best response

 A best response si is unique if ui (si, s−i ) > ui (si, s−i ) for every si ≠ si



Best Response

 Given s–i , there are only two possibilities:

(1)  i has a pure strategy si that is a unique best response to s–i

(2)  i has infinitely many best responses to s–i

Proof. Suppose (1) is false. Then there are two possibilities:

 Case 1:  si isn’t unique, i.e., ≥ 2 strategies are best responses to s–i

 Then they all must have the same expected utility

 Otherwise, they aren’t all “best”

 Thus any mixture of them is also a best response 

 Thus (2) happens.

 Case 2: si isn’t pure, i.e., it’s a mixture of k > 2 actions

 The actions correspond to pure strategies, so this reduces to Case 1

 Thus (2) happens.

 Theorem: Always there exists a pure best response si to s–i

Proof. In both (1) and (2) above, there should be one pure best response. 



Example

 Suppose we modify the Prisoner’s Dilemma to give Agent 1 another 

possible action:

 Suppose 2’s strategy is to play action C

 What are 1’s best responses?

 Suppose 2’s strategy is to play action D

 What are 1’s best responses?

C D

C 3, 3 0, 5

D 5, 0 1, 1

E 3, 3 1, 3



Nash Equilibrium
 Equilibrium: it is simply a state of the world where economic forces are 

balanced and in the absence of external influence the equilibrium variables will 

not change. 

 More intuitively, a state in which no person involved in the game wants any 

change.

 Famous economic equilibria: Nash equilibrium, Correlated equilibrium, Market 

Clearance equilibrium

 s = (s1, …, sn) is a Nash equilibrium if for every i, si is a best response to s−i

 Every agent’s strategy is a best response to the other agents’ strategies

 No agent can do better by unilaterally changing his strategy

 Theorem (Nash, 1951): Every game with a finite number 

of agents and actions has at least one Nash equilibrium

 In Which Side of the Road, 

(Left,Left) and (Right,Right) are Nash equilibria

In the Prisoner’s Dilemma, (D,D) is a Nash equilibrium

 Ironically, it’s the only pure-strategy profile that

isn’t Pareto optimal

C D

C 3, 3 0, 5

D 5, 0 1, 1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



Strict Nash Equilibrium

 A Nash equilibrium s = (s1, . . . , sn) is strict if for every i,

si is the only best response to s−i

• i.e., any agent who unilaterally changes strategy will do worse

 Recall that if a best response is unique, it must be pure

 It follows that in a strict Nash equilibrium, all of the strategies are pure

 But if a Nash equilibrium is pure, it isn’t necessarily strict

 Which of the following Nash equilibria are strict? Why?

C D

C 3, 3 0, 5

D 5, 0 1, 1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Center 0, 0 1, ½

C D

C 3, 3 0, 4

D 4, 0 1, 1



Weak Nash Equilibrium

 If a Nash equilibrium s isn’t strict, then it is weak

 At least one agent i has more than one best response to s–i

 If a Nash equilibrium includes a mixed strategy, then it is weak

 If a mixture of k => 2 actions is a best response to s–i , then any other 

mixture of the actions is also a best response

 If a Nash equilibrium consists only of pure

strategies, it might still be weak

 Weak Nash equilibria are less stable

than strict Nash equilibria

 If a Nash equilibrium is weak, then at

least one agent has infinitely many best

responses, and only one of them is in s

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Center 0, 0 1, ½



Finding Mixed-Strategy Nash Equilibria

 In general, it’s tricky to compute mixed-strategy Nash equilibria

 But easier if we can identify the support of the equilibrium strategies

 In 2x2 games, we can do this easily 

 We especially use theorem below proved earlier

Theorem A: Always there exists a pure best response si to s–i

 Corollary B: If (s1, s2)  is a pure Nash equilibrium only among pure 

strategies, it should be a Nash equilibrium among mixed strategies as well

 Now let (s1, s2) be a Nash equilibrium

 If both s1, s2 have supports of size one, it should be one of the cells of the 

normal-form matrix and we are done by Corollary B 

 Thus assume at least one of s1, s2  has a support of size two.



Finding Mixed-Strategy Nash Equilibria

 Now if the support of one of s1, s2 , say s1, is of size one, i.e., it is pure, then 

s2 should be pure as well, unless both actions of player 2 have the same 

payoffs; in this case any mixed strategy of both actions can be Nash 

equilibrium.

 Thus in the rest we assume both supports have size two.

 Thus to find s1 assume agent 1 selects action a1 with probability p and 

action a'1 with probability 1-p. 

 Now since s2 has a support of size two, its support must include both 

of agent 2’s actions, and they must have the same expected utility

• Otherwise agent 2’s best response would be just one of them and its 

support has size one.

 Hence find p such that u2(s1, a2) = u2(s1, a'2), i.e., solve the equation to 

find p (and thus s2)

 Similarly, find s2 such that u1(a1, s2) = u1(a'1, s2) 



Finding Mixed-Strategy Nash Equilibria

Example: Battle of the Sexes

 We already saw pure Nash equilibria.

 If there’s a mixed-strategy equilibrium,

 both strategies must be mixtures

of {Opera, Football}

 each must be a best response to the other

 Suppose the husband’s strategy is sh = {(p, Opera), (1–p, Football)}

 Expected utilities of the wife’s actions:

uw(Opera, sh) = 2p; uw(Football, sh) = 1(1 − p)

 If the wife mixes the two actions, they must have the same expected utility

 Otherwise the best response would be to always use the action whose 

expected utility is higher

 Thus   2p = 1 – p,    so    p = 1/3

 So the husband’s mixed strategy is sh = {(1/3, Opera), (2/3, Football)}

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Finding Mixed-Strategy Nash Equilibria

 Similarly, we can show the wife’s

mixed strategy is

 sw = {(2/3, Opera), (1/3, Football)}

 So the mixed-strategy Nash

equilibrium is (sw , sh), where 

 sw = {(2/3, Opera), (1/3, Football)}

 sh = {(1/3, Opera), (2/3, Football)}

 Questions:

 Like all mixed-strategy Nash equilibria, (sw , sh) is weak

• Both players have infinitely many other best-response strategies

• What are they?

 How do we know that (sw , sh) really is a Nash equilibrium?

• Indeed the proof is by the way that we found Nash equilibria (sw , sh) 

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Finding Mixed-Strategy Nash Equilibria

 sw = {(2/3, Opera), (1/3, Football)}

 sh = {(1/3, Opera), (2/3, Football)}

 Wife’s expected utility is

 2(2/9) + 1(2/9) + 0(5/9) = 2/3

 Husband’s expected utility is also 2/3

 It’s “fair” in the sense that both players

have the same expected payoff

 But it’s Pareto-dominated by both

of the pure-strategy equilibria

 In each of them, one agent gets 1 and the other gets 2

 Can you think of a fair way of choosing actions that produces a higher 

expected utility?

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2

2/3 • 1/3 = 2/9 2/3 • 2/3 = 4/9

1/3 • 1/3 = 1/9 1/3 • 2/3 = 2/9



Finding Mixed-Strategy Nash Equilibria

Matching Pennies 

 Easy to see that in this game, no pure strategy

could be part of a Nash equilibrium

 For each combination of pure strategies,

one of the agents can do better by changing

his/her strategy

 Thus there isn’t a strict Nash equilibrium since it would be pure.

 But again there’s a mixed-strategy equilibrium

 Can be derived the same way as in the Battle of the Sexes

• Result is (s,s), where s = {(½, Heads), (½, Tails)}

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1



Another Interpretation of Mixed Strategies

 Suppose agent i has a deterministic method for picking a strategy, but it 

depends on factors that aren’t part of the game itself

 If i plays a game several times, i may pick different strategies

 If the other players don’t know how i picks a strategy, they’ll be uncertain 

what i’s strategy will be

 Agent i’s mixed strategy is everyone else’s assessment of how likely i

is to play each pure strategy

 Example:

 In a series of soccer penalty kicks, the kicker could kick left or right in 

a deterministic pattern that the goalie thinks is random



Complexity of Finding Nash Equilibria

 We’ve discussed how to find Nash equilibria in some special cases

 Step 1: look for pure-strategy equilibria

• Examine each cell of the matrix

• If no cell in the same row is better for agent 1, and

no cell in the same column is better for agent 2

then the cell is a Nash equilibrium

 Step 2: look for mixed-strategy equilibria

• Write agent 2’s strategy as {(q, b), (1–q, b')};

look for q such that a and a' have the same expected utility

• Write agent 1’s strategy as {(p, a), (1–p, a')};

look for p such that b and b' have the same expected utility

 More generally for two-player games with any number of actions

for each player, if we know support of each, we can find a mixed-Nash           

equilibrium in polynomial-time by solving linear equations (via linear program).

 What about the general case?

b b'

a u1, v1 u2, v2

a' u3, v3 u4, v4

2x2 games



Complexity of Finding Nash Equilibria

 General case: n players, m actions per player, payoff matrix has mn cells

(not in the book)

 Brute-force approach:

 Step 1: Look for pure-strategy equilibria

• At each cell of the matrix, 

› For each player, can that player do

better by choosing a different action?

• Polynomial time

 Step 2: Look for mixed-strategy equilibria

• For every possible combination of supports for s1, …, sn

› Solve sets of simultaneous equations

• Exponentially many combinations of supports

• Can it be done more quickly?



Complexity of Finding Nash Equilibria

 Two-player games

 Lemke & Howson (1964): solve a set of simultaneous equations that 

includes all possible support sets for s1, …, sn

• Some of the equations are quadratic => worst-case exponential time

 Porter, Nudelman, & Shoham (2004)

• AI methods (constraint programming)

 Sandholm, Gilpin, & Conitzer (2005)

• Mixed Integer Programming (MIP) problem

 n-player games

 van der Laan, Talma, & van der Heyden (1987)

 Govindan, Wilson (2004)

 Porter, Nudelman, & Shoham (2004)

 Worst-case running time still is exponential in the size of the payoff matrix



Complexity of Finding Nash Equilibria

 There are special cases that can be done in polynomial time in the size of 

the payoff matrix

 Finding pure-strategy Nash equilibria

• Check each square of the payoff matrix

 Finding Nash equilibria in zero-sum games (see later in thi)

• Linear programming

 For the general case,

 It’s unknown whether there are polynomial-time algorithms to do it

 It’s unknown whether there are polynomial-time algorithms to compute 

approximations

 But we know both questions are PPAD-complete (but not NP-

complete) even for two-player games (with some definition of PPAD

introduced by Christos Papadimitriou in 1994)

 This is still one of the most important open problems in computational 

complexity theory



e-Nash Equilibrium
 Reflects the idea that agents might not change strategies if the gain would 

be very small

 Let e > 0. A strategy profile s = (s1, . . . , sn ) is an e-Nash equilibrium if

for every agent i and for every strategy si ≠ si, 

ui (si , s−i ) ≥ ui (si, s−i ) – e

 e-Nash equilibria exist for every e > 0

 Every Nash equilibrium is an e-Nash equilibrium, and is surrounded 

by a region of e-Nash equilibria

 This concept can be computationally useful

 Algorithms to identify e-Nash equilibria need consider only a finite set 

of mixed-strategy profiles (not the whole continuous space) 

 Because of finite precision, computers generally find only e-Nash 

equilibria, where e is roughly the machine precision

 Finding an e-Nash equilibrium is still PPAD-complete (but not NP-

complete) even for two-player games



The Price of Anarchy (PoA)

 In the Chocolate Game, recall that

 (T3,T3) is the action profile that

provides the best outcome for everyone

 If we assume each payer acts to maximize

his/her utility without regard to the other, 

we get (T1,T1)

 By choosing (T3,T3), each player could 

have gotten 3 times as much

 Let’s generalize “best outcome for everyone”

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1



The Price of Anarchy
 Social welfare function: a function w(s) that measures the players’ welfare, 

given a strategy profile s, e.g.,

 Utilitarian function: w(s) = average expected utility

 Egalitarian function: w(s) = minimum expected utility

 Social optimum: benevolent dictator chooses s* that optimizes w

 s* = arg maxs w(s)

 Anarchy: no dictator; every player selfishly tries to optimize his/her own 

expected utility, disregarding the welfare of the other players

 Get a strategy profile s (e.g., a Nash equilibrium)

 In general, w(s) ≤ w(s*)

Price of Anarchy (PoA) = maxs is Nash equilibrium w(s*) / w(s)

 PoA is the most popular measure of inefficiency of equilibria.

 We are generally interested in PoA which is closer to 1, i.e., all equilibria are 

good approximations of an optimal solution.



The Price of Anarchy

 Example: the Chocolate Game

 Utilitarian welfare function:

w(s) = average expected utility

 Social optimum:  s* = (T3,T3)

 w (s*) = 3

 Anarchy:  s = (T1,T1)

 w(s) = 1

 Price of anarchy

= w(s*) / w(s) = 3/1 = 3

 What would the answer be if we used the egalitarian welfare function?

T 3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1



The Price of Anarchy

 Sometimes instead of maximizing a welfare function w,

we want to minimize a cost function c (e.g. in Prisoner’s Dilemma)

 Utilitarian function: c(s) = avg. expected cost

 Egalitarian function: c(s) = max. expected cost

 Need to adjust the definitions

 Social optimum:    s* = arg mins c(s)

 Anarchy: every player selfishly tries to minimize his/her own 

cost, disregarding the costs of the other players

• Get a strategy profile s (e.g., a Nash equilibrium)

• In general, c(s) ≥ c(s*)

 Price of Anarchy (PoA) = maxs is Nash equilibrium c(s) / c(s*)

• i.e., the reciprocal of what we had before

• E.g. in Prisoner’s dilemma  PoA= 3

C D

C 3, 3 0, 5

D 5, 0 1, 1



Rationalizability

 A strategy is rationalizable if a perfectly rational agent could justifiably 

play it against perfectly rational opponents

 The formal definition complicated

 Informally:

 A strategy for agent i is rationalizable if it’s a best response to 

strategies that i could reasonably believe the other agents have

 To be reasonable, i’s beliefs must take into account

• the other agents’ knowledge of i’s rationality, 

• their knowledge of i’s knowledge of their rationality, 

• and so on so forth recursively

 A rationalizable strategy profile is a strategy profile that consists only of 

rationalizable strategies 



Rationalizability
 Every Nash equilibrium is composed of

rationalizable strategies

 Thus the set of rationalizable strategies 

(and strategy profiles) is always nonempty

Example: Which Side of the Road

 For Agent 1, the pure strategy s1 = Left is rationalizable because

 s1 = Left is 1’s best response if 2 uses s2 = Left,

 and 1 can reasonably believe 2 would rationally use s2 = Left, because

• s2 = Left is 2’s best response if 1 uses s1 = Left,

• and 2 can reasonably believe 1 would rationally use s1 = Left, 

because

› s1 = Left is 1’s best response if 2 uses s2 = Left,

› and 1 can reasonably believe 2 would rationally use s2 = Left, 

because

- … and so on so forth…

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



Rationalizability

 Some rationalizable strategies are

not part of any Nash equilibrium

Example: Matching Pennies

 For Agent 1, the pure strategy s1 = Heads is rationalizable because

 s1 = Heads is 1’s best response if 2 uses s2 = Heads,

 and 1 can reasonably believe 2 would rationally use s2 = Heads, because

• s2 = Heads is 2’s best response if 1 uses s1 = Tails, 

• and 2 can reasonably believe 1 would rationally use s1 = Tails, 

because

› s1 = Tails is 1’s best response if 2 uses s2 = Tails, 

› and 1 can reasonably believe 2 would rationally use s2 = Tails, 

because

- … and so on so forth…

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1



Common Knowledge

 The definition of common knowledge is recursive analogous to the 

definition of rationalizability

 A property p is common knowledge if 

 Everyone knows p

 Everyone knows that everyone knows p

 Everyone knows that everyone knows that everyone knows p

 …



We Aren’t Rational

 More evidence that we aren’t game-theoretically rational agents

 Why choose an “irrational” strategy?

 Several possible reasons …



Reasons for Choosing “Irrational” Strategies

(1) Limitations in reasoning ability

 Didn’t calculate the Nash equilibrium correctly

 Don’t know how to calculate it

 Don’t even know the concept

(2) Wrong payoff matrix - doesn’t encode agent’s actual preferences

 It’s a common error to take an external measure (money, points, etc.) 

and assume it’s all that an agent cares about

 Other things may be more important than winning

• Being helpful

• Curiosity

• Creating mischief 

• Venting frustration

(3) Beliefs about the other agents’ likely actions (next slide)



Beliefs about Other Agents’ Actions

 A Nash equilibrium strategy is best for you if the other agents also use their 

Nash equilibrium strategies

 In many cases, the other agents won’t use Nash equilibrium strategies

 If you can guess what actions they’ll choose, then 

• You can compute your best response to those actions

› maximize your expected payoff, given their actions

• Good guess => you may do much better than the Nash equilibrium

• Bad guess => you may do much worse



Worst-Case Expected Utility

 For agent i, the worst-case expected utility of a 

strategy si is the minimum over all possible 

combinations of strategies for the other agents:

 Example: Battle of the Sexes

 Wife’s strategy sw = {(p, Opera), (1 – p, Football)}

 Husband’s strategy sh = {(q, Opera), (1 – q, Football)}

 uw(p,q) = 2pq + (1 – p)(1 – q) = 3pq – p – q + 1

 For any fixed p, uw(p,q) is linear in q

• e.g., if p = ½, then uw(½,q) = ½ q + ½   

 0 ≤ q ≤ 1, so the min must be at q = 0 or q = 1 

• e.g., minq (½ q + ½) is at q = 0

 minq uw(p,q) = min (uw(p,0), uw(p,1)) = min (1 – p, 2p)

Husband

Wife
Opera Football

Opera 2, 1 0, 0

Football 0, 0 1, 2

mins-i  ui si,s-i( )

We can write uw(p,q) 

instead of uw(sw , sh ) 



Maxmin Strategies

 A maxmin strategy for agent i

 A strategy s1 that makes i’s worst-case expected utility as high as 

possible:

 This isn’t necessarily unique

 Often it is mixed

 Agent i’s maxmin value, or security level, is the maxmin strategy’s 

worst-case expected utility:

 For 2 players it simplifies to 

   

max
si

min
s- i

 ui si,s-i( )

argmax
si

min
s-i

 ui si,s-i( )

Also called maximin

 211 , minmax
21

ssu
ss



Example

 Wife’s and husband’s strategies

 sw = {(p, Opera), (1 – p, Football)}

 sh = {(q, Opera), (1 – q, Football)}

 Recall that wife’s worst-case expected utility is

minq uw(p,q) = min (1 – p, 2p)

 Find p that maximizes it

 Max is at 1 – p = 2p, i.e., p = 1/3

 Wife’s maxmin value is 1 – p = 2/3

 Wife’s maxmin strategy is

{(1/3, Opera), (2/3, Football)}

 Similarly,

 Husband’s maxmin value is 2/3

 Husband’s maxmin strategy is

{(2/3, Opera), (1/3, Football)} p

minq uw(p,q) 

2p 1 – p

Husband

Wife
Opera Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Minmax Strategies (in 2-Player Games)

 Minmax strategy and minmax value

 Duals of their maxmin counterparts 

 Suppose agent 1 wants to punish agent 2, regardless of how it 

affects agent 1’s own payoff

 Agent 1’s minmax strategy against agent 2

 A strategy s1 that minimizes the expected utility of 2’s best 

response to s1

 Agent 2’s minmax value is 2’s maximum expected utility if 

agent 1 plays his/her minmax strategy:

 Minmax strategy profile: both players use their minmax

strategies

min
s1

max
s2

 u2 s1, s2( )

argmin
s1

max
s2

 u2 s1, s2( )
Also called 

minimax



Example

 Wife’s and husband’s strategies

 sw = {(p, Opera), (1 – p, Football)}

 sh = {(q, Opera), (1 – q, Football)}

 uh(p,q) = pq + 2(1 – p)(1 – q) = 3pq – 2p – 2q + 2

 Given wife’s strategy p, husband’s expected utility is linear in q

 e.g., if p = ½, then uh(½,q) = –½ q + 1

 Max is at q = 0 or q = 1

maxq uh(p,q) =  (2–2p, p)

 Find p that minimizes this

 Min is at –2p + 2 = p  p = 2/3

 Husband/s minmax value is 2/3

 Wife’s minmax strategy is

{(2/3, Opera), (1/3, Football)}

2p 1 – p

Husband

Wife
Opera Football

Opera 2, 1 0, 0

Football 0, 0 1, 2

p

2 – 2p



Minmax Strategies in n-Agent Games

 In n-agent games (n > 2), agent i usually can’t minimize agent j’s payoff by 

acting unilaterally

 But suppose all the agents “gang up” on agent j

 Let s*
−j be a mixed-strategy profile that minimizes j’s maximum payoff, 

i.e., 

 For every agent i ≠ j, a minmax strategy for i is i’s component of s-j*

 Agent j’s minmax value is j’s maximum payoff against s–j*

 We have equality since we just replaced s–j* by its value above

max
s j

 uj s j,s- j

*( ) = min
s- j

max
s j

 uj s j,s- j( )

s- j

* = argmin
s- j

max
s j

 uj s j, s- j( )
æ

è
ç

ö

ø
÷



Minimax Theorem (von Neumann, 1928)

 Theorem. Let G be any finite two-player zero-sum game.  For each player i,

 i’s expected utility in any Nash equilibrium

= i’s maxmin value 

= i’s minmax value

 In other words, for every Nash equilibrium (s1*, s2*),

- Note that since -u2= u1 the third term does not mention u2

 Corollary. For two-player zer-sum games:{Nash equilibria} = {maxmin

strategy profiles}= {minmax strategy profiles}

 Note that this is not necessary true for non-zero-sum games as we saw for 

Battle of Sexes in previous slides

 Terminology: the value (or minmax value) of G is agent 1’s minmax value

),(),(minmax),(maxmin),( *

2

*
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Proof of Minimax Theorem

 Let-u2=u1 = u and let mixed strategies 𝑠1 = x = x1, … , xk and s2 = y =
y1, … , yr .

 Then u 𝑥, 𝑦 =  𝑖 𝑗 𝑥𝑖𝑦𝑗𝑢𝑖,𝑗= 𝑗 𝑦𝑗  𝑖 𝑥𝑖𝑢𝑖,𝑗

 We want to find  𝑥∗ which optimizes 𝑣1 = max𝑥min
𝑦
𝑢(x,y) 

 Since player 2 is doing his best response (in min
𝑦
𝑢(x,y) ) he sets 𝑦𝑗 > 0 only 

if  𝑖 𝑥𝑖𝑢𝑖,𝑗 is minimized.

Thus 𝑣1=  𝑗 𝑖 𝑥𝑖𝑦𝑗𝑢𝑖,𝑗 = ( 𝑗 𝑦𝑗)min𝑗 𝑖 𝑥𝑖𝑢𝑖,𝑗 = min
j
 𝑖 𝑥𝑖𝑢𝑖,𝑗 ≤  𝑖 𝑥𝑖𝑢𝑖,𝑗

for any j 

Thus we have the following LP1 to find  𝑥∗

max 𝑣1

such that 𝑣1 ≤  𝑖 𝑥𝑖𝑢𝑖,𝑗 for all j

 𝑖 𝑥𝑖 = 1

𝑥𝑖≥ 0



Proof of Minimax Theorem (continued)

 Similarly for 𝑣2 = min𝑦max
𝑥
𝑢(x,y) we have LP2

min 𝑣2

such that 𝑣2 ≥  𝑗 𝑦𝑗𝑢𝑖,𝑗 for all i

 𝑗 𝑦𝑗 = 1

𝑦𝑗≥ 0

 But LP1 And LP2 are duals of each other and by the (strong) duality 

theorem 𝑣1 = 𝑣2

 Also note that if (x,y) is a Nash equilibrium, x should satisfy LP1 (since we 

used only the fact that y is a best response to x in the proof) and y should 

satisfy LP2 (since we used only the fact that x is a best response to y in the 

proof) and thus 𝑢1 𝑥, 𝑦 = 𝑣1 = 𝑣2



Dominant Strategies

 Let si and si be two strategies for agent i

 Intuitively, si dominates si if agent i does better with si than with si

for every strategy profile s−i of the remaining agents

Mathematically, there are three gradations of dominance:

 si strictly dominates si if for every s−i ,

ui (si, s−i) > ui (si, s−i)

 si weakly dominates si if for every s−i ,

ui (si, s−i) ≥ ui (si, s−i)

and for at least one s−i ,

ui (si, s−i ) > ui (si, s−i ) 

 si very weakly dominates si if for every s−i ,

ui (si, s−i ) ≥ ui (si, s−i)



Dominant Strategy Equilibria

 A strategy is strictly (resp., weakly, very weakly) dominant for an agent 

if it strictly (weakly, very weakly) dominates any other strategy for that 

agent

 A strategy profile (s1, . . . , sn) in which every si is dominant for agent i

(strictly, weakly, or very weakly) is a Nash equilibrium

• Why?

 Such a strategy profile forms an equilibrium in strictly (weakly, very 

weakly) dominant strategies



Examples

 Example: the Prisoner’s Dilemma

 http://www.youtube.com/watch?v=ED9gaAb2BEw

 For agent 1, D is strictly dominant

 If agent 2 uses C, then

• Agent 1’s payoff is higher with D than with C

 If agent 2 uses D, then

• Agent 1’s payoff is higher with D than with C

 Similarly, D is strictly dominant for agent 2

 So (D,D) is a Nash equilibrium in strictly dominant strategies

 How do strictly dominant strategies relate to strict Nash equilibria?

C D

C 3, 3 0, 5

D 5, 0 1, 1

C D

C 3, 3 0, 5

D 5, 0 1, 1

http://www.youtube.com/watch?v=ED9gaAb2BEw


Example: Matching Pennies

 Matching Pennies

 If agent 2 uses Heads, then

• For agent 1, Heads is better than Tails

 If agent 2 uses Tails, then

• For agent 1, Tails is better than Heads

 Agent 1 doesn’t have a dominant strategy

=> no Nash equilibrium in dominant strategies

 Which Side of the Road

 Same kind of argument as above

 No Nash equilibrium in dominant strategies

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



L

D 5, 1

Elimination of Strictly Dominated Strategies

 A strategy si is strictly (weakly, very weakly) dominated for an agent i

if some other strategy si strictly (weakly, very weakly) dominates si

 A strictly dominated strategy can’t be a best

response to any move, so we can eliminate it

(remove it from the payoff matrix)

 This gives a reduced game 

 Other strategies may now be strictly dominated,

even if they weren’t dominated before

 IESDS (Iterated Elimination of Strictly Dominated Strategies):

 Do elimination repeatedly until no more eliminations are possible

 When no more eliminations are possible, we have

the maximal reduction of the original game

L R

U 3, 3 0, 5

D 5, 1 1, 0

L R

D 5, 1 1, 0



 If you eliminate a strictly dominated strategy, the reduced 

game has the same Nash equilibria as the original one

 Thus

{Nash equilibria of the original game}

= {Nash equilibria of the maximally reduced game} 

 Use this technique to simplify finding Nash equilibria

 Look for Nash equilibria on the maximally reduced game

 In the example, we ended up with a single cell

 The single cell must be a unique Nash equilibrium

in all three of the games

IESDS

L R

U 3, 3 0, 5

D 5, 1 1, 0

L R

D 5, 1 1, 0

L

D 5, 1



IESDS

 Even if si isn’t strictly dominated by a pure

strategy, it may be strictly dominated by a

mixed strategy

 Example: the three games shown at right

 1st game:

• R is strictly dominated by L (and by C)

• Eliminate it, get 2nd game

 2nd game:

• Neither U nor D dominates M

• But {(½, U), (½, D)} strictly dominates M

› This wasn’t true before we removed R

• Eliminate it, get 3rd game

 3rd game is maximally reduced 

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

L C

U 3, 1 0, 1

D 0, 1 4, 1



If there is intelligent life on other planets, in a majority of 

them, they would have discovered correlated equilibrium 

before Nash  equilibrium.

----Roger Myerson

Correlated Equilibrium: Pithy Quote



 Not every correlated equilibrium is a Nash equilibrium but 

every Nash equilibrium is a correlated equilibrium

We have a traffic light: a fair randomizing device that tells one 

of the agents to go and the other to wait.

 Benefits:

 easier to compute than Nash, e.g., it is polynomial-time 

computable

 fairness is achieved

 the sum of social welfare exceeds that of any Nash 

equilibrium

Correlated Equilibrium: Intuition



Correlated Equilibrium

 Recall the mixed-strategy equilibrium

for the Battle of the Sexes

 sw = {(2/3, Opera), (1/3, Football)}

 sh = {(1/3, Opera), (2/3, Football)}

 This is “fair”: each agent is equally likely to get his/her preferred activity

 But 5/9 of the time, they’ll choose different activities => utility 0 for both

 Thus each agent’s expected utility is only 2/3

 We’ve required them to make their choices independently

 Coordinate their choices (e.g., flip a coin) => eliminate cases where they 

choose different activities

 Each agent’s payoff will always be 1 or 2; expected utility 1.5

 Solution concept: correlated equilibrium

 Generalization of a Nash equilibrium

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Correlated Equilibrium Definition

 Let G be an 2-agent game (for now).

 Recall that in a (mixed) Nash Equilibrium at the end we compute a 

probability matrix (also known as joint probability distribution) 𝑃 = [𝑝𝑖,𝑗] 

where Σ𝑖,𝑗𝑝𝑖,𝑗 = 1 and in addition 𝑝𝑖,𝑗 = 𝑞𝑖 . 𝑞𝑗
′ where Σ𝑖𝑞𝑖 = 1 and 

Σ𝑗𝑞𝑗
′ = 1 (here 𝑞 and 𝑞′ are the mixed strategies of the first agent and the 

second agent). 

 Now if we remove the constraint 𝑝𝑖,𝑗 = 𝑞𝑖 . 𝑞𝑗
′ (and thus Σ𝑖𝑞𝑖 = 1 and 

Σ𝑗𝑞𝑗
′ = 1) but still  keep all other properties of Nash Equilibrium then we 

have a Correlated Equilibrium.

 Surely it is clear that by this definition of Correlated Equilibrium, every 

Nash Equilibrium is a Correlated Equilibrium as well but note vice versa.

 Even for a more general 𝑛-player game, we can compute a Correlated 

Equilibrium in polynomial time by a linear program (as we see in the next 

slide).

 Indeed the constraint 𝑝𝑖,𝑗 = 𝑞𝑖 . 𝑞𝑗
′ is the one that makes computing Nash 

Equilibrium  harder.





Motivation of Correlated Equilibrium

 Let G be an n-agent game

 Let “Nature”(e.g., a traffic light) choose action profile a = (a1, …, an) 

randomly according to our computed joint probability distribution 

(Correlated Equilibirum) 𝑝.

 Then “Nature” tells each agent i the value of ai (privately)

 An agent can condition his/her action based on (private) value ai

 However by the definition of best response in Nash Equilibrium (which 

also exists in Correlated Equilibrium), agent i will not deviate from 

suggested action ai

 Note that here we implicitly assume because other agents are rational as 

well, they choose the suggested actions by the “Nature” which are 

given to them privately. 

 Since there is no randomization in the actions, the correlated equilibrium 

might seem more natural.



Auctions
 An auction is a way (other than bargaining) to sell a fixed supply of a 

commodity (an item to be sold) for which there is no well-established 

ongoing market

 Bidders make bids

 proposals to pay various amounts of money for the commodity

 Often the commodity is sold to the bidder who makes the largest bid

 Example applications

 Real estate, art, oil leases, electromagnetic spectrum, electricity, eBay, 

google ads

 Private-value auctions

• Each bidder may have a different bidder value or bidder valuation (BV), 

i.e., how much the commodity is worth to that bidder

• A bidder’s BV is his/her private information, not known to others

• E.g., flowers, art, antiques



Types of Auctions

 Classification according to the rules for bidding

• English

• Dutch

• First price sealed bid

• Vickrey

• many others

 On the following pages, I’ll describe several of these and will analyze their 

equilibria

 A possible problem is collusion (secret agreements for fraudulent purposes)

 Groups of bidders who won’t bid against each other, to keep the price low

 Bidders who place phony (phantom) bids to raise the price (hence the 

auctioneer’s profit)

 If there’s collusion, the equilibrium analysis is no longer valid



English Auction

 The name comes from oral auctions in English-speaking countries, but I think this 

kind of auction was also used in ancient Rome

 Commodities: 

 antiques, artworks, cattle, horses, wholesale fruits and vegetables, old books, etc.

 Typical rules:

 Auctioneer solicits an opening bid from the group

 Anyone who wants to bid should call out a new price at least c higher than the 

previous high bid (e.g., c = 1 dollar)

 The bidding continues until all bidders but one have dropped out

 The highest bidder gets the object being sold, for a price equal to his/her final bid

 For each bidder i, let

 vi = i’s valuation of the commodity (private information)

 Bi = i’s final bid

 If i wins, then i’s profit is πi = vi – Bi and everyone else’s profit = 0



English Auction (continued)

 Nash equilibrium:

 Each bidder i participates until the bidding reaches vi ,

then drops out

 The highest bidder, i, gets the object, at price Bi < vi , so πi = Bi – vi > 0

• Bi is close to the second highest bidder’s valuation

 For every bidder j ≠ i, πj = 0

 Why is this an equilibrium?

 Suppose bidder j deviates and none of the other bidders deviate

 If j deviates by dropping out earlier, 

• Then j’s profit will be 0, no better than before

 If u deviates by bidding Bi > vj, then

• j win’s the auction but j’s profit is vj – Bj < 0, worse than before



English Auction (continued)

 If there is a large range of bidder valuations, then the difference between 

the highest and 2nd-highest valuations may be large

 Thus if there’s wide disagreement about the item’s value, the winner 

might be able to get it for much less than his/her valuation

 Let n be the number of bidders

 The higher n is, the more likely it is that the highest and 2nd-highest 

valuations are close 

• Thus, the more likely it is that the winner pays close to his/her 

valuation



First-Price Sealed-Bid Auctions

 Examples:

 construction contracts (lowest bidder)

 real estate

 art treasures

 Typical rules

 Bidders write their bids for the object and their names on slips of 

paper and deliver them to the auctioneer

 The auctioneer opens the bid and finds the highest bidder

 The highest bidder gets the object being sold, for a price equal to 

his/her own bid

 Winner’s profit = BV– price paid

 Everyone else’s profit = 0



First-Price Sealed-Bid (continued)

 Suppose that

 There are n bidders

 Each bidder has a private valuation, vi, which is private information

 But a probability distribution for vi is common knowledge

• Let’s say vi is uniformly distributed over [0, 100]

 Let Bi denote the bid of player i

 Let πi denote the profit of player i

 What is the Nash equilibrium bidding strategy for the players?

 Need to find the optimal bidding strategies

 First we’ll look at the case where n = 2



First-Price Sealed-Bid (continued)

 Finding the optimal bidding strategies

 Let Bi be agent i’s bid, and πi be agent i’s profit

 If Bi ≥ vi, then πi ≤ 0

• So, assuming rationality, Bi < vi

 Thus

• πi = 0 if Bi ≠ maxj {Bj}

• πi = vi − Bi if Bi = maxj {Bj}

 How much below vi should your bid be?

 The smaller Bi is,

• the less likely that i will win the object

• the more profit i will make if i wins the object



First-Price Sealed-Bid (continued)
 Case n = 2

 Suppose your BV is v and your bid is B

 Let x be the other bidder’s BV

and αx be his/her bid, where 0 < α < 1

• You don’t know the values of x and α

 Your expected profit is

• E(π) = P(your bid is higher)·(v−B) + P(your bid is lower)·0

 If x is uniformly distributed over [0, 100], then the pdf is f(x) = 1/100, 0 ≤ x ≤ 100

 P(your bid is higher) = P(αx < B) = P(x < B/α) = 0
B/α (1/100) dx = B/100α

 so E(π) = B(v – B)/100α

 If you want to maximize your expected profit (hence your valuation of money is 

risk-neutral), then your maximum bid is

• maxB B(v−B)/100α = maxB B(v−B) = maxB Bv − B2

• maximum occurs when v – 2B = 0  =>  B = v/2

 So, bid ½ of what the item is worth to you!



First-Price Sealed-Bid (continued)

 With n bidders, if your bid is B, then 

 P(your bid is the highest) = (B/100α)n–1

 Assuming risk neutrality, you choose your bid to be

• maxB Bn−1(v−B) = v(n−1)/n

 As n increases, B → v

 I.e., increased competition drives bids close to the valuations



Dutch Auctions

 Examples

 flowers in the Netherlands, fish market in England and Israel, tobacco market 

in Canada

 Typical rules

 Auctioneer starts with a high price

 Auctioneer lowers the price gradually, until some buyer shouts “Mine!”

 The first buyer to shout “Mine!” gets the object at the price the auctioneer just 

called

 Winner’s profit = BV – price

 Everyone else’s profit = 0

 Dutch auctions are game-theoretically equivalent to first-price, sealed-bid auctions

 The object goes to the highest bidder at the highest price

 A bidder must choose a bid without knowing the bids of any other bidders

 The optimal bidding strategies are the same



Sealed-Bid, Second-Price Auctions

 Background: Vickrey (1961)

 Used for

 stamp collectors’ auctions 

 US Treasury’s long-term bonds 

 Airwaves auction in New Zealand 

 eBay and Amazon

 Typical rules

 Bidders write their bids for the object and their names on slips of paper and 

deliver them to the auctioneer

 The auctioneer opens the bid and finds the highest bidder

 The highest bidder gets the object being sold, for a price equal to the second 

highest bid

 Winner’s profit = BV – price

 Everyone else’s profit = 0



Sealed-Bid, Second-Price (continued)

 Equilibrium bidding strategy:

 It is a weakly dominant strategy to bid your true value: This property is also 

called truthfulness or strategyproofness of an auction.

 To show this, need to show that overbidding or underbidding cannot increase your 

profit and might decrease it.

 Let V be your valuation of the object, and X be the highest bid made by anyone else

 Let sV be the strategy of bidding V, and πV be your profit when using sV

 Let sB be a strategy that bids some B ≠ V, and πB be your profit when using sB

 There are 3! = 6 possible numeric orderings of B, V, and X:

 Case 1, X > B > V:  You don’t get the commodity either way, so πB = πV = 0.

 Case 2, B > X > V:  πB = V − X < 0, but πV = 0

 Case 3, B > V > X:  you pay X rather than your bid, so πB = πV = V − X > 0

 Case 4, X < B < V: you pay X rather than your bid, so πB = πV = V − X > 0

 Case 5, B < X < V:  πB = 0, but πV = V − X > 0

 Case 6, B < V < X:  You don’t get the commodity either way, so  πB = πV = 0



Sealed-Bid, Second-Price (continued)

 Sealed-bid, 2nd-price auctions are nearly equivalent to English auctions

 The object goes to the highest bidder

 Price is close to the second highest BV (close since the second highest 

bids just a bit below his actual BV)



Coalitional Games with Transferable Utility 

 Given a set of agents, a coalitional game defines how well each group (or 

coalition) of agents can do for itself—its payoff 

 Not concerned with 

• how the agents make individual choices within a coalition, 

• how they coordinate, or 

• any other such detail 

 Transferable utility assumption: the payoffs to a coalition may be freely 

redistributed among its members

 Satisfied whenever there is a universal currency that is used for 

exchange in the system 

 Implies that each coalition can be assigned a single value as its payoff



Coalitional Games with Transferable Utility 

 A coalitional game with transferable utility is a pair G = (N,v), where

 N = {1, 2, …, n} is a finite set of players

 (nu) v : 2N  associates with each coalition S ⊆ N a real-valued 

payoff v(S), that the coalition members can distribute among 

themselves

 v is the characteristic function

 We assume v() = 0 and that v is non-negative.

 A coalition’s payoff is also called its worth

 Coalitional game theory is normally used to answer two questions:

(1) Which coalition will form?

(2) How should that coalition divide its payoff among its members?

 The answer to (1) is often “the grand coalition” (all of the agents) 

 But this answer can depend on making the right choice about (2)



Example: A Voting Game

 Consider a parliament that contains 100 representatives from four political 

parties:

 A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.) 

 They’re going to vote on whether to pass a $100 million spending bill|

(and how much of it should be controlled by each party)

 Need a majority (≥ 51 votes) to pass legislation

 If the bill doesn’t pass, then every party gets 0 

 More generally, a voting game would include

 a set of agents N

 a set of winning coalitions W  2N

• In the example, all coalitions that have enough votes to pass the bill

 v(S) = 1 for each coalition S  W

• Or equivalently, we could use v(S) = $100 million

 v(S) = 0 for each coalition S  W



Superadditive Games

 A coalitional game G = (N,v) is superadditive if the union of two disjoint 

coalitions is worth at least the sum of its members’ worths

 for all S, T  N, if S  T = , then v (S ∪ T) ≥ v (S ) + v (T ) 

 The voting-game example is superadditive

 If S  T = , v(S) = 0, and v(T) = 0, then v(S ∪ T) ≥ 0

 If S  T =  and v(S) = 1, then v(T) = 0 and v(S ∪ T ) = 1

 Hence v(S ∪ T) ≥ v(S ) + v(T ) 

 If G is superadditive, the grand coalition always has the highest possible 

payoff

 For any S ≠ N,  v(N) ≥ v(S) + v(N–S) ≥ v(S)

 G = (N,v) is additive (or inessential) if

• For S, T  N and S  T = , then v(S ∪ T ) = v(S ) + v(T ) 



Constant-Sum Games

 G is constant-sum if the worth of the grand coalition equals the sum of the 

worths of any two coalitions that partition N

• v(S) + v(N – S) = v(N), for every S  N

 Every additive game is constant-sum

 additive  =>   v(S) + v(N – S) = v(S ∪(N – S)) = v(N)

 But not every constant-sum game is additive

 Example is a good exercise



Convex Games

 G is convex (supermodular) if for all S,T  N,

• v(S ∪ T) + v(S  T) ≥ v(S) + v(T)

 It can be shown the above definition is equivalent to for all i in N  and for 

all S  T  N-{i}, 

 v(T ∪ {i})- v(T) ≥ v(S ∪ {i}) - v(S)

 Prove it as an exercise

 Recall the definition of a superadditive game:

 for all S,T  N, if S  T = , then v (S ∪ T) ≥ v (S ) + v (T ) 

 It follows immediately that every super-additive game is a convex game



Simple Coalitional Games

 A game G = (N, v) is simple for every coalition S, 

• either v(S) = 1 (i.e., S wins) or v(S) = 0 (i.e., S loses)

 Used to model voting situations (e.g., the example earlier)

 Often add a requirement that if S wins, all supersets of S would also win:

• if v(S) = 1, then for all T ⊇ S, v(T) = 1

 This doesn’t quite imply superadditivity

 Consider a voting game G in which 50% of the votes is sufficient to 

pass a bill

 Two coalitions S and T, each is exactly 50% N

 v(S) = 1  and  v(T) = 1  

 But v(S  T) ≠ 2



Proper-Simple Games

 G is a proper simple game if it is both simple and constant-sum

 If S is a winning coalition, then N – S is a losing coalition

• v(S) + v(N – S) = 1, so if v(S) = 1 then v(N – S) = 0

 Relations among the classes of games:

{Additive games}  {Super-additive  games}  {Convex games}

{Additive games}  {Constant-sum game}

{Proper-simple games}  {Constant-sum games}

{Proper-simple games}  {Simple game}



Analyzing Coalitional Games
Main question in coalitional game theory

 How to divide the payoff to the grand coalition?

Why focus on the grand coalition? 

 Many widely studied games are super-additive

• Expect the grand coalition to form because it has the highest payoff

 Agents may be required to join

• E.g., public projects often legally bound to include all participants 

 Given a coalitional game G = (N, v), where N = {1, …, n}

 We’ll want to look at the agents’ shares in the grand coalition’s payoff 

• The book writes this as (Psi) ψ(N,v) = x = (x1, …, xn), where ψi(N,v)

= xi is the agent’s payoff

 We won’t use the ψ notation much

• Can be useful for talking about several different coalitional games at 

once, but we usually won’t be doing that



Terminology

 Feasible payoff set

= {all payoff profiles that don’t distribute more than the worth of the 

grand coalition}

= {(x1, …, xn) | x1 + x2 + … +  xn} ≤ v(N)

 Pre-imputation set

= {feasible payoff profiles that are efficient, i.e., distribute the entire 

worth of the grand coalition}

= {(x1, …, xn) | x1 + x2 + … +  xn} = v(N)

 Imputation set

= {payoffs in in which each agent gets

at least what he/she would get by going

alone (i.e., forming a singleton coalition)}

= {(x1, …, xn)  : i  N, xi ≥ v({i})}

im•pute:  verb [ trans. ]

represent as being done, 

caused, or possessed by 

someone; attribute : the 

crimes imputed to Richard.



Fairness, Symmetry

 What is a fair division of the payoffs?

 Three axioms describing fairness

• Symmetry, dummy player, and additivity axioms

 Definition: agents i and j are interchangeable if they always contribute the 

same amount to every coalition of the other agents

 i.e., for every S that contains neither i nor j , v(S ∪{i}) = v (S ∪{j})

 Symmetry axiom: in a fair division of the payoffs, interchangeable agents 

should receive the same payments, i.e.,

 if i and j are interchangeable and (x1, …, xn) is the payoff profile, then 

xi = xj



Dummy Players

 Agent i is a dummy player if i’s contributes to any coalition is exactly 

the amount i can achieve alone 

 i.e., for all S s.t. i ∉ S, v(S ∪ {i}) = v(S) + v({i})

 Dummy player axiom: in a fair distribution of payoffs, dummy players 

should receive payment equal to the amount they achieve on their own

 i.e., if i is a dummy player and (x1, …, xn) is the payoff profile, then 

xi = v({i})



Additivity

 Let G1 = (N, v1)  and  G2 = (N, v2)  be two coalitional games with the same 

agents

 Consider the combined game G = (N, v1 + v2), where

 (v1 + v2)(S) = v1(S) + v2(S)

 Additivity axiom: in a fair distribution of payoffs for G, the agents should 

get the sum of what they would get in the two separate games

 i.e., for each player i,  ψi(N, v1 + v2) = ψi(N, v1) + ψi(N, v2)



Shapley Values

 Recall that a pre-imputation is a payoff division that is both feasible and 

efficient 

 Theorem. Given a coalitional game (N,v), there’s a unique pre-imputation 

(N,v) that satisfies the Symmetry, Dummy player, and Additivity axioms. 

For each player i, i’s share of φ(N,v) is

 i(N,v) is called i’s Shapley value

 Lloyd Shapley introduced it in 1953

 It captures agent i’s average marginal contribution

 The average contribution that i makes to the coalition, averaged over 

every possible sequence in which the grand coalition can be built up 

from the empty coalition 



Shapley Values

 Suppose agents join the grand coalition one by one, all sequences equally likely

 Let S = {agents that joined before i} and  T = {agents that joined after i}

 i’s marginal contribution is  v(S∪{i}) − v(S)

• independent of how S is ordered, independent of how T is ordered

 Pr[S, then i, then T]

= (# of sequences that include S then i then T) / (total # of sequences)

= |S|! |T|! / |N|!

 Let i,S = Pr[S, then i, then T]  i’s marginal contribution when it joins

 Then

 Let i (N,v) = expected contribution over all possible sequences

 Then

ji,S =
S ! ( N - S -1)!

N !
(v(SÈ{i})- v(S))

ji N,v( ) = ji,S

SÍN-{i}

å =
1

N !
S ! (N - S -1)! (v(SÈ{i})- v(S))

SÍN-{i}

å



Example

 The voting game again

 Parties A, B, C, and D have 45, 25, 15, and 15 representatives

 A simple majority (51 votes) is required to pass the $100M bill

 How much money is it fair for each party to demand?

 Calculate the Shapley values of the game

 Every coalition with ≥ 51 members has value 1; other coalitions have value 0

 Recall what it means for two agents i and j to be interchangeable:

 for every S that contains neither i nor j , v (S ∪{i}) = v (S ∪{j})

 B and C are interchangeable

 Each adds 0 to  , 1 to {A}, 0 to {D}, and 0 to {A,D}

 Similarly, B and D are interchangeable, and so are C and D

 So the fairness axiom says that B, C, and D should each get the same amount



 Recall that

 In the example, it will be useful to let 'i,S be the term inside the summation

 Hence 'i,S = |N|!i,S

 Let’s compute A(N, v)

 N = |{A,B,C,D}| = 4, so

 S may be any of the following:

 , {B}, {C}, {D}, {B,C}, {B,D}, {C,D}

 We need to sum over all of them:

jA N,v( ) =
1

4!
( ¢jA,Æ + ¢jA,{B} + ¢jA,{C} + ¢jA,{D} + ¢jA,{B,C} + ¢jA,{B,D} + ¢jA,{C,D} + ¢jA,{B,C,D})

¢jA,S = S ! (3- S )! (v(SÈA)-v(S))

ji,S =
S ! ( N - S -1)!(v(SÈ{i})- v(S))

N !

ji N,v( ) = ji,S

SÍN-{i}

å =
1

N !
S ! ( N - S -1)! (v(SÈ{i})- v(S))

SÍN-{i}

å



S =   v({A}) – v() = 0 – 0 = 0  'A, = 0! 3! 0 = 0

S = {B}  v({A,B}) – v({B}) = 1 – 0 = 1  'A,{B} = 1! 2! 1 = 2

S = {C}  same

S = {D}  same

S = {B,C}  v({A,B,C}) – v({B,C}) = 1 – 0 = 1  'A,{B,C} = 2! 1! 1 = 2

S = {B,D}  same

S = {C,D}  same

S = {B,C,D}  v({A,B,C,D}) – v({B,C,D}) = 1 – 1 = 0  'A,{B,C,D} = 3! 0! 0 = 0

¢jA,S = S ! (3- S )! (v(SÈA)-v(S))

jA N,v( ) =
1

4!
( ¢jA,Æ + ¢jA,{B} + ¢jA,{C} + ¢jA,{D} + ¢jA,{B,C} + ¢jA,{B,D} + ¢jA,{C,D} + ¢jA,{B,C,D})

=
1

24
(0 + 2 + 2 + 2 + 2 + 2 + 2 + 0) =12 / 24 =1/ 2

A has 45 members  

B has 25 members  

C has 15 members  

D has 15 members



 Similarly, B = C = D = 1/6

 The text calculates it using Shapley’s formula

 Here’s another way to get it:

 If A gets ½, then the other ½ will be divided among B, C, and D

 They are interchangeable, so a fair division will give them equal 

amounts: 1/6 each

 So distribute the money as follows:

 A gets (1/2) $100M = $50M

 B, C, D each get (1/6) $100M = $16 2
3 M



Stability of the Grand Coalition

 Agents have incentive to form the grand coalition iff there aren’t any 

smaller coalitions in which they could get higher payoffs

 Sometimes a subset of the agents may prefer a smaller coalition

 Recall the Shapley values for our voting example:

• A gets $50M; B, C, D each get $

 A on its own can’t do better

 But {A, B} have incentive to defect and divide the $100M

• e.g., $75M for A and $25M for B

 What payment divisions would make the agents want to join the grand 

coalition?

  

16 2
3 M



The Core

 The core of a coalitional game includes every payoff vector x that gives 

every sub-coalition S at least as much in the grand coalition as S could get 

by itself

 All feasible payoff vectors x = (x1, …, xn) such that for every S  N,

 For every payoff vector x in the core, no S has any incentive to deviate 

from the grand coalition

 i.e., form their own coalition, excluding the others

 It follows immediately that if x is in the core then x is efficient

 Why?

xi
iÎS

å ³ v S( )



Analogy to Nash Equilibria

 The core is an analog of the set of all Nash equilibria in a noncooperative

game

 There, no agent can do better by deviating from the equilibrium

 But the core is stricter

 No set of agents can do better by deviating from the grand coalition

 Analogous to the set of strong Nash equilibria

 Equilibria in which no coalition of agents can do better by deviating

 Unlike the set of Nash equilibria, the core may sometimes be empty

 In some cases, no matter what the payoff vector is, some agent or group 

of agents has incentive to deviate



Example of an Empty Core

 Consider the voting example again:

 Shapley values are $50M to A, and $16.33M each to B, C, D

 The minimal coalitions that achieve 51 votes are 

› {A,B}, {A,C}, {A,D}, {B,C,D}

 If the sum of the payoffs to B, C, and D is < $100M, this set of agents has 

incentive to deviate from the grand coalition

 Thus if x is in the core, x must allocate $100M to {B, C, D}

 But if B, C, and D get the entire $100M, then A (getting $0) has 

incentive to join with whichever of B, C, and D got the least

• e.g., form a coalition {A,B} without the others

 So if x allocates the entire $100M to {B,C,D} then x cannot be in the 

core

 So the core is empty



Simple Games

 There are several situations in which the core is either guaranteed to exist, or 

guaranteed not to exist

 The first one involves simple games

 Recall: G is simple for every coalition S, either v(S) = 1 or v(S) = 0

 Player i is a veto player if v(S) = 0 for any S  N – {i} 

 Theorem. In a simple game, the core is empty iff there is no veto player

 Example: previous slide



Simple Games

 Theorem. In a simple game in which there are veto players, the core is 

{all payoff vectors in which non-veto players get 0}

 Example: consider a modified version of the voting game 

• An 80% majority is required to pass the bill 

 Recall that A, B, C, and D have 45, 25, 15, and 15 representatives

 The minimal winning coalitions are {A, B, C} and {A, B, D} 

 All winning coalitions must include both A and B 

 So A and B are veto players

• The core includes all distributions of the $100M among A and B

• Neither A nor B can do better by deviating



Non-Additive Constant-Sum Games

 Recall:

 G is constant-sum if for all S, v(S) + v(N – S) = v(N) 

 G is additive if v(S ∪ T ) = v(S ) + v(T ) whenever S and T are disjoint

 Theorem. Every non-additive constant-sum game has an empty core 

 Example: consider a constant-sum game G with 3 players a, b, c

 Suppose v(a) = 1, v(b) = 1, v(c) = 1, v({a,b,c})=4

 Then v(a) + v({b,c}) = v({a,b})+v(c) = v({a,c}) + v(b) = 4

 Thus v({b,c}) = 4 – 1 = 3 ≠ v(b) + v(c)

 So G is not additive

 Consider x = (1.333, 1.333, 1.333)

 v({a,b}) = 3, so if {a,b} deviate, they can allocate (1.5,1.5)

 To keep {a,b} from deviating, suppose we use x = (1.5, 1.5, 1)

 v({a,c}) = 3, so if {a,c} deviate, they can allocate (1.667, 1.333)



Convex Games

 Recall:

 G is convex if for all S,T  N,  v(S ∪ T) ≥ v(S) + v(T) – v(S  T)

 Theorem. Every convex game has a nonempty core

 Theorem. In every convex game, the Shapley value is in the core



Modified Parliament Example

 100 representatives from four political parties:

 A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.) 

 Any coalition of parties can approve a spending bill worth $1K times the 

number of representatives in the coalition:

v(A) = $45K,         v(B) = $25K,          v(C) = $15K,          v(D) = $15K,

v({A,B}) = $70K, v({A,C}) = $60K, v({A,D}) = $60K,

v({B,C}) = $40K,  v({B,D}) = $40K,  v({C,D}) = $30K, …

v({A,B,C,D}) = $100K 

 Is the game convex?

v S( ) = $1000 ´size(i)
iÎS

å



Modified Parliament Example

 Let S be the grand coalition

 What is each party’s Shapley value in S?

 Each party’s Shapley value is the average value it adds to S, averaged over 

all 24 of the possible sequences in which S might be formed:

A, B, C, D;       A, B, D, C; A, C, B, D; A, C, D, B; etc

 In every sequence, every party adds exactly $1K times its size 

 Thus every party’s Shapley value is $1K times its size:

 A = $45K, B = $25K, C = $15K, D = $15K



Modified Parliament Example

 Suppose we distribute v(S) by giving each party its Shapley value

 Does any party or group of parties have an incentive to leave and form a 

smaller coalition T?

 v(T) = $1K times the number of representatives in T

= the sum of the Shapley values of the parties in T

 If each party in T gets its Shapley value, it does no better in T than in S

 If some party in T gets more than its Shapley value, then another party 

in T will get less than its Shapley value

 No case in which every party in T does better in T than in S

 No case in which all of the parties in T will have an incentive to leave S and 

join T

 Thus the Shapley value is in the core


