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What is Game Theory?

 Game Theory is about interactions among self-interested agents (players)

 Different agents have different preferences (i.e. like some outcomes more 

than others)

 Note that game theory is not a tool; it is a set of concepts.

 Goals of this course: 

 Formal definitions and technicality of the algorithms

 Better understanding of real-world games



Algorithmic Game Theory

 Algorithm Game Theory is often viewed as “incentive-aware algorithm 

design’’

 Algorithm design often deals with dumb objects though Algorithmic Game 

Theory often deals with smart (self-interested) objects 

 Combines Algorithm Design and Game Theory

 Also known as Mechanism Design

 Goal of Mechanism Design

 Encourage selfish agents to act socially by designing rewarding rules 

such that when agents optimize their own objective, a social objective is 

met



Some Fields where Game Theory is Used

 Economics, business

 Markets, auctions

 Economic predictions

 Bargaining, fair division



Some Fields where Game Theory is Used

 Government, politics, military

 Negotiations

 Voting systems

 International relations 

 War

 …

World War 1

army trench



Some Fields where Game Theory is Used

 Biology, psychology, sociology

 Population ratios, territoriality

 Social behavior

 …



Some Fields where Game Theory is Used

 Engineering, computer science

 Game programs

 Computer and

communication networks 

 Road networks

 …



 A (finite, n-person) normal-form game includes the following:

1. An ordered set N = (1, 2, 3, …, n) of agents or players: 

2. Each agent i has a finite set Ai of possible actions

• An action profile is an n-tuple a = (a1, a2, …, an ), where a1 ∈ A1,  

a2 ∈ A2,  …,  an ∈ An

• The set of all possible action profiles is A = A1×· · ·× An

3. Each agent i has a real-valued utility (or payoff) function

ui (a1, . . . , an ) = i’s payoff if the action profile is (a1, . . . , an )

 Most other game representations

can be reduced to normal form 

 Usually represented by an n-dimensional

payoff (or utility) matrix

 for each action profile, shows the 

utilities of all the agents

Games in Normal Form

take 3 take 1

take 3 3, 3 0, 4

take 1 4, 0 1, 1



The Prisoner’s Dilemma

 Scenario: The police are holding two prisoners

as suspects for committing a crime

 For each prisoner, the police have enough evidence for a 1 year prison sentence

 They want to get enough evidence for a 4 year prison sentence

 They tell each prisoner,

• “If you testify against the other prisoner,

we’ll reduce your prison sentence by 1 year”

 C = Cooperate (with the other prisoner):

refuse to testify against him/her

 D = Defect: testify against the other prisoner

 Both prisoners cooperate => both go to prison for 1 year

 Both prisoners defect => both go to prison for 4 – 1 = 3 years

 One defects, other cooperates => cooperator goes to prison for 4 years; defector 

goes free

C D

C –1, –1 –4, 0

D 0, –4 –3, –3



Prisoner’s Dilemma

 General form:

c > a > d > b

2a > b + c

C D

C a, a b, c

D c, b d, d

C D

C –1, –1 –4, 0

D 0, –4 –3, –3

We used

this:

C D

C 3, 3 0, 5

D 5, 0 1, 1

take 3 take 1

take 3 3, 3 0, 4

take 1 4, 0 1, 1

Equivalent:

Game

theorists

usually

use this:



Utility Functions

 Idea: the preferences of a rational agent must obey some constraints

 Agent’s choices are based on rational preferences

⇒ agent’s behavior is describable as maximization of expected utility

 Constraints:

Orderability (sometimes called Completeness):

(A ≻ B)  ∨ (B ≻ A)  ∨ (A ~ B)

Transitivity:

(A ≻ B)  ∧ (B ≻ C)   ⇒ (A ≻ C)

 Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944).

 Given preferences satisfying the constraints above, there exists a real-

valued function u such that

u(A) ≥ u(B)  ⇔ A ≻ B               (*)

u is called a utility function 



Utility Scales for Games

 Suppose that all the agents have rational preferences, and that this is 

common knowledge* to all of them

 Then games are insensitive to positive affine transformations of one or 

more agents’ payoffs

 Let c and d be constants, c > 0

 For one or more agents i, replace every payoff xij with cxij + d

 The game still models the same sets of rational preferences

a21 a22

a11 x11, x21 x12, x22

a12 x13, x23 x14, x24

a21 a22

a11 cx11+d, x21 cx12+d, x22

a12 cx13+d, x23 cx14+d, x24

a21 a22

a11 cx11+d, ex21+f cx12+d, ex22+f

a12 cx13+d, ex23+f cx14+d, ex24+f

————————

*Common knowledge is a complicated topic; I’ll discuss it later



Common-payoff Games 

 Common-payoff game:

 For every action profile, all agents have the same payoff

 Also called a pure coordination game or a team game

 Need to coordinate on an action that is maximally beneficial to all

 Which side of the road?

 2 people driving toward each other

in a country with no traffic rules 

 Each driver independently decides

whether to stay on the left or the right

 Need to coordinate your action

with the action of the other driver

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



A Brief Digression

 Mechanism design: set up the rules of the game, to give each agent an 

incentive to choose a desired outcome

 E.g., the law says what side of the road to drive on

 Sweden on September 3, 1967:



Zero-sum Games

 These games are purely competitive

 Constant-sum game:

 For every action profile, the sum of the payoffs is the same, i.e.,

 there is a constant c such for every action profile  a = (a1, …, an),

• u1(a) + … + un(a) = c

 Any constant-sum game can be transformed into an equivalent game in 

which the sum of the payoffs is always 0

 Positive affine transformation: subtract c/n from every payoff

 Thus constant-sum games are usually called zero-sum games



Examples

 Matching Pennies

 Two agents, each has a penny

 Each independently chooses

to display Heads or Tails 

• If same, agent 1 gets both pennies

• Otherwise agent 2 gets both pennies

 Penalty kicks in soccer

 A kicker and a goalie

 Kicker can kick left or right

 Goalie can jump to left or right

 Kicker scores if he/she kicks to one

side and goalie jumps to the other

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1



Another Example:Rock-Paper-Scissors



 A game is nonconstant-sum (usually called nonzero-sum)

if there are action profiles a and b such that

• u1(a) + … + un(a)  ≠  u1(b) + … + un(b)

 e.g., the Prisoner’s Dilemma

 Battle of the Sexes

 Two agents need to coordinate their actions, 

but they have different preferences

 Original scenario:

• husband prefers football,

wife prefers opera

 Another scenario:

• Two nations must act together to

deal with an international crisis,

and they prefer different solutions

Nonzero-Sum Games

C D

C 3, 3 0, 5

D 5, 0 1, 1

Husband:

Opera Football

Wife:
Opera 2, 1 0, 0

Football 0, 0 1, 2



Symmetric Games

 In a symmetric game, every agent has

the same actions and payoffs

 If we change which agent is which,

the payoff matrix will stay the same

 For a 2x2 symmetric game,

it doesn’t matter whether agent 1 is

the row player or the column player

 The payoff matrix looks like this:

 In the payoff matrix of a symmetric

game, we only need to display u1

 If you want to know another

agent’s payoff, just interchange

the agent with agent 1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

a1 a2

a1 w, w x, y

a2 y, x z, z

Which side of the road?

a1 a2

a1 w x

a2 y z



Strategies in Normal-Form Games

 Pure strategy: select a single action and play it 

 Each row or column of a payoff matrix represents both an action and a 

pure strategy

 Mixed strategy: randomize over the set of available actions according to 

some probability distribution

 si(aj ) = probability that action aj will be played in mixed strategy si

 The support of si = {actions that have probability > 0 in si}

 A pure strategy is a special case of a mixed strategy 

 support consists of a single action

 A strategy si is fully mixed if its support is Ai

 i.e., nonzero probability for every action available to agent i

 Strategy profile: an n-tuple s = (s1, …, sn) of strategies, one for each agent 



Expected Utility

 A payoff matrix only gives payoffs for pure-strategy profiles

 Generalization to mixed strategies uses expected utility 

 First calculate probability of each outcome,

given the strategy profile (involves all agents) 

 Then calculate average payoff for agent i, weighted by the probabilities

 Given strategy profile s = (s1, …, sn)

• expected utility is the sum, over all action profiles, of the profile’s 

utility times its probability:

i.e.,

   

u
i
s( ) = ui a( )

aÎA

å Pr[a | s]

   

u
i
s1,..., sn( ) = ui a1,...,an( )

(a1 ,...,an )ÎA

å
j=1

n

P s j a j( )



Some Comments about Normal-Form Games

 Only two kinds of strategies in the normal-form game representation:

 Pure strategy: just a single action

 Mixed strategy: probability distribution over pure strategies

• i.e., choose an action at random from the probability distribution

 The normal-form game representation may see very restricted

 No such thing as a conditional strategy

(e.g., cross the bay if the temperature is above 70)

 No temperature or anything else to observe

 However much more complicated games can be mapped into normal-form 

games

 Each pure strategy is a description of what you’ll do in every situation 

you might ever encounter in the game

 In later sessions, we see more examples

C D

C 3, 3 0, 5

D 5, 0 1, 1



How to reason about games?

 In single-agent decision theory, look at an optimal strategy

 Maximize the agent’s expected payoff in its environment 

 With multiple agents, the best strategy depends on others’ choices 

 Deal with this by identifying certain subsets of outcomes called solution 

concepts

 First we discuss two solution concepts:

 Pareto optimality 

 Nash equilibrium

 Later we will discuss several others



Pareto Optimality

 A strategy profile s Pareto dominates a strategy profile s if 

 no agent gets a worse payoff with s than with s,

i.e., ui(s) ≥ ui(s) for all i ,

 at least one agent gets a better payoff with s than with s,

i.e., ui(s) > ui(s) for at least one i

 A strategy profile s is Pareto optimal (or Pareto efficient) if there’s no 

strategy profile s' that Pareto dominates s

 Every game has at least one Pareto optimal profile

 Always at least one Pareto optimal profile in which the strategies are 

pure



C D

C 3, 3 0, 5

D 5, 0 1, 1

Examples

The Prisoner’s Dilemma

 (D,C) is Pareto optimal: no profile gives player 1 a higher payoff

 (C, D) is Pareto optimal: no profile gives player 2 a higher payoff

 (C,C) is Pareto optimal: no profile gives both players a higher payoff

 (D,D) isn’t Pareto optimal: (C,C) Pareto dominates it

Which Side of the Road

 (Left,Left) and (Right,Right) are Pareto optimal

 In common-payoff games, all Pareto optimal

strategy profiles have the same payoffs

 If (Left,Left) had payoffs (2,2), then

(Right,Right) wouldn’t be Pareto optimal

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



Best Response

 Suppose agent i knows how the others are going to play

 Then i has an ordinary optimization problem:

maximize expected utility

 We’ll use s–i to mean a strategy profile for all of the agents except i

s−i = (s1, …, si−1, si+1, …, sn)

 Let si be any strategy for agent i. Then 

(si, s−i ) =  (s1, …, si−1, si, si+1, …, sn)

 si is a best response to s−i if for every strategy si available to agent i,

ui (si , s−i )  ≥  ui (si, s−i )

 There is always at least one best response

 A best response si is unique if ui (si, s−i ) > ui (si, s−i ) for every si ≠ si



Best Response

 Given s–i , there are only two possibilities:

(1)  i has a pure strategy si that is a unique best response to s–i

(2)  i has infinitely many best responses to s–i

Proof. Suppose (1) is false. Then there are two possibilities:

 Case 1:  si isn’t unique, i.e., ≥ 2 strategies are best responses to s–i

 Then they all must have the same expected utility

 Otherwise, they aren’t all “best”

 Thus any mixture of them is also a best response 

 Thus (2) happens.

 Case 2: si isn’t pure, i.e., it’s a mixture of k > 2 actions

 The actions correspond to pure strategies, so this reduces to Case 1

 Thus (2) happens.

 Theorem: Always there exists a pure best response si to s–i

Proof. In both (1) and (2) above, there should be one pure best response. 



Example

 Suppose we modify the Prisoner’s Dilemma to give Agent 1 another 

possible action:

 Suppose 2’s strategy is to play action C

 What are 1’s best responses?

 Suppose 2’s strategy is to play action D

 What are 1’s best responses?

C D

C 3, 3 0, 5

D 5, 0 1, 1

E 3, 3 1, 3



Nash Equilibrium
 Equilibrium: it is simply a state of the world where economic forces are 

balanced and in the absence of external influence the equilibrium variables will 

not change. 

 More intuitively, a state in which no person involved in the game wants any 

change.

 Famous economic equilibria: Nash equilibrium, Correlated equilibrium, Market 

Clearance equilibrium

 s = (s1, …, sn) is a Nash equilibrium if for every i, si is a best response to s−i

 Every agent’s strategy is a best response to the other agents’ strategies

 No agent can do better by unilaterally changing his strategy

 Theorem (Nash, 1951): Every game with a finite number 

of agents and actions has at least one Nash equilibrium

 In Which Side of the Road, 

(Left,Left) and (Right,Right) are Nash equilibria

In the Prisoner’s Dilemma, (D,D) is a Nash equilibrium

 Ironically, it’s the only pure-strategy profile that

isn’t Pareto optimal

C D

C 3, 3 0, 5

D 5, 0 1, 1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



Strict Nash Equilibrium

 A Nash equilibrium s = (s1, . . . , sn) is strict if for every i,

si is the only best response to s−i

• i.e., any agent who unilaterally changes strategy will do worse

 Recall that if a best response is unique, it must be pure

 It follows that in a strict Nash equilibrium, all of the strategies are pure

 But if a Nash equilibrium is pure, it isn’t necessarily strict

 Which of the following Nash equilibria are strict? Why?

C D

C 3, 3 0, 5

D 5, 0 1, 1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Center 0, 0 1, ½

C D

C 3, 3 0, 4

D 4, 0 1, 1



Weak Nash Equilibrium

 If a Nash equilibrium s isn’t strict, then it is weak

 At least one agent i has more than one best response to s–i

 If a Nash equilibrium includes a mixed strategy, then it is weak

 If a mixture of k => 2 actions is a best response to s–i , then any other 

mixture of the actions is also a best response

 If a Nash equilibrium consists only of pure

strategies, it might still be weak

 Weak Nash equilibria are less stable

than strict Nash equilibria

 If a Nash equilibrium is weak, then at

least one agent has infinitely many best

responses, and only one of them is in s

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1

Center 0, 0 1, ½



Finding Mixed-Strategy Nash Equilibria

 In general, it’s tricky to compute mixed-strategy Nash equilibria

 But easier if we can identify the support of the equilibrium strategies

 In 2x2 games, we can do this easily 

 We especially use theorem below proved earlier

Theorem A: Always there exists a pure best response si to s–i

 Corollary B: If (s1, s2)  is a pure Nash equilibrium only among pure 

strategies, it should be a Nash equilibrium among mixed strategies as well

 Now let (s1, s2) be a Nash equilibrium

 If both s1, s2 have supports of size one, it should be one of the cells of the 

normal-form matrix and we are done by Corollary B 

 Thus assume at least one of s1, s2  has a support of size two.



Finding Mixed-Strategy Nash Equilibria

 Now if the support of one of s1, s2 , say s1, is of size one, i.e., it is pure, then 

s2 should be pure as well, unless both actions of player 2 have the same 

payoffs; in this case any mixed strategy of both actions can be Nash 

equilibrium.

 Thus in the rest we assume both supports have size two.

 Thus to find s1 assume agent 1 selects action a1 with probability p and 

action a'1 with probability 1-p. 

 Now since s2 has a support of size two, its support must include both 

of agent 2’s actions, and they must have the same expected utility

• Otherwise agent 2’s best response would be just one of them and its 

support has size one.

 Hence find p such that u2(s1, a2) = u2(s1, a'2), i.e., solve the equation to 

find p (and thus s2)

 Similarly, find s2 such that u1(a1, s2) = u1(a'1, s2) 



Finding Mixed-Strategy Nash Equilibria

Example: Battle of the Sexes

 We already saw pure Nash equilibria.

 If there’s a mixed-strategy equilibrium,

 both strategies must be mixtures

of {Opera, Football}

 each must be a best response to the other

 Suppose the husband’s strategy is sh = {(p, Opera), (1–p, Football)}

 Expected utilities of the wife’s actions:

uw(Opera, sh) = 2p; uw(Football, sh) = 1(1 − p)

 If the wife mixes the two actions, they must have the same expected utility

 Otherwise the best response would be to always use the action whose 

expected utility is higher

 Thus   2p = 1 – p,    so    p = 1/3

 So the husband’s mixed strategy is sh = {(1/3, Opera), (2/3, Football)}

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Finding Mixed-Strategy Nash Equilibria

 Similarly, we can show the wife’s

mixed strategy is

 sw = {(2/3, Opera), (1/3, Football)}

 So the mixed-strategy Nash

equilibrium is (sw , sh), where 

 sw = {(2/3, Opera), (1/3, Football)}

 sh = {(1/3, Opera), (2/3, Football)}

 Questions:

 Like all mixed-strategy Nash equilibria, (sw , sh) is weak

• Both players have infinitely many other best-response strategies

• What are they?

 How do we know that (sw , sh) really is a Nash equilibrium?

• Indeed the proof is by the way that we found Nash equilibria (sw , sh) 

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Finding Mixed-Strategy Nash Equilibria

 sw = {(2/3, Opera), (1/3, Football)}

 sh = {(1/3, Opera), (2/3, Football)}

 Wife’s expected utility is

 2(2/9) + 1(2/9) + 0(5/9) = 2/3

 Husband’s expected utility is also 2/3

 It’s “fair” in the sense that both players

have the same expected payoff

 But it’s Pareto-dominated by both

of the pure-strategy equilibria

 In each of them, one agent gets 1 and the other gets 2

 Can you think of a fair way of choosing actions that produces a higher 

expected utility?

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2

2/3 • 1/3 = 2/9 2/3 • 2/3 = 4/9

1/3 • 1/3 = 1/9 1/3 • 2/3 = 2/9



Finding Mixed-Strategy Nash Equilibria

Matching Pennies 

 Easy to see that in this game, no pure strategy

could be part of a Nash equilibrium

 For each combination of pure strategies,

one of the agents can do better by changing

his/her strategy

 Thus there isn’t a strict Nash equilibrium since it would be pure.

 But again there’s a mixed-strategy equilibrium

 Can be derived the same way as in the Battle of the Sexes

• Result is (s,s), where s = {(½, Heads), (½, Tails)}

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1



Another Interpretation of Mixed Strategies

 Suppose agent i has a deterministic method for picking a strategy, but it 

depends on factors that aren’t part of the game itself

 If i plays a game several times, i may pick different strategies

 If the other players don’t know how i picks a strategy, they’ll be uncertain 

what i’s strategy will be

 Agent i’s mixed strategy is everyone else’s assessment of how likely i

is to play each pure strategy

 Example:

 In a series of soccer penalty kicks, the kicker could kick left or right in 

a deterministic pattern that the goalie thinks is random



Complexity of Finding Nash Equilibria

 We’ve discussed how to find Nash equilibria in some special cases

 Step 1: look for pure-strategy equilibria

• Examine each cell of the matrix

• If no cell in the same row is better for agent 1, and

no cell in the same column is better for agent 2

then the cell is a Nash equilibrium

 Step 2: look for mixed-strategy equilibria

• Write agent 2’s strategy as {(q, b), (1–q, b')};

look for q such that a and a' have the same expected utility

• Write agent 1’s strategy as {(p, a), (1–p, a')};

look for p such that b and b' have the same expected utility

 More generally for two-player games with any number of actions

for each player, if we know support of each, we can find a mixed-Nash           

equilibrium in polynomial-time by solving linear equations (via linear program).

 What about the general case?

b b'

a u1, v1 u2, v2

a' u3, v3 u4, v4

2x2 games



Complexity of Finding Nash Equilibria

 General case: n players, m actions per player, payoff matrix has mn cells

(not in the book)

 Brute-force approach:

 Step 1: Look for pure-strategy equilibria

• At each cell of the matrix, 

› For each player, can that player do

better by choosing a different action?

• Polynomial time

 Step 2: Look for mixed-strategy equilibria

• For every possible combination of supports for s1, …, sn

› Solve sets of simultaneous equations

• Exponentially many combinations of supports

• Can it be done more quickly?



Complexity of Finding Nash Equilibria

 Two-player games

 Lemke & Howson (1964): solve a set of simultaneous equations that 

includes all possible support sets for s1, …, sn

• Some of the equations are quadratic => worst-case exponential time

 Porter, Nudelman, & Shoham (2004)

• AI methods (constraint programming)

 Sandholm, Gilpin, & Conitzer (2005)

• Mixed Integer Programming (MIP) problem

 n-player games

 van der Laan, Talma, & van der Heyden (1987)

 Govindan, Wilson (2004)

 Porter, Nudelman, & Shoham (2004)

 Worst-case running time still is exponential in the size of the payoff matrix



Complexity of Finding Nash Equilibria

 There are special cases that can be done in polynomial time in the size of 

the payoff matrix

 Finding pure-strategy Nash equilibria

• Check each square of the payoff matrix

 Finding Nash equilibria in zero-sum games (see later in thi)

• Linear programming

 For the general case,

 It’s unknown whether there are polynomial-time algorithms to do it

 It’s unknown whether there are polynomial-time algorithms to compute 

approximations

 But we know both questions are PPAD-complete (but not NP-

complete) even for two-player games (with some definition of PPAD

introduced by Christos Papadimitriou in 1994)

 This is still one of the most important open problems in computational 

complexity theory



e-Nash Equilibrium
 Reflects the idea that agents might not change strategies if the gain would 

be very small

 Let e > 0. A strategy profile s = (s1, . . . , sn ) is an e-Nash equilibrium if

for every agent i and for every strategy si ≠ si, 

ui (si , s−i ) ≥ ui (si, s−i ) – e

 e-Nash equilibria exist for every e > 0

 Every Nash equilibrium is an e-Nash equilibrium, and is surrounded 

by a region of e-Nash equilibria

 This concept can be computationally useful

 Algorithms to identify e-Nash equilibria need consider only a finite set 

of mixed-strategy profiles (not the whole continuous space) 

 Because of finite precision, computers generally find only e-Nash 

equilibria, where e is roughly the machine precision

 Finding an e-Nash equilibrium is still PPAD-complete (but not NP-

complete) even for two-player games



The Price of Anarchy (PoA)

 In the Chocolate Game, recall that

 (T3,T3) is the action profile that

provides the best outcome for everyone

 If we assume each payer acts to maximize

his/her utility without regard to the other, 

we get (T1,T1)

 By choosing (T3,T3), each player could 

have gotten 3 times as much

 Let’s generalize “best outcome for everyone”

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1



The Price of Anarchy
 Social welfare function: a function w(s) that measures the players’ welfare, 

given a strategy profile s, e.g.,

 Utilitarian function: w(s) = average expected utility

 Egalitarian function: w(s) = minimum expected utility

 Social optimum: benevolent dictator chooses s* that optimizes w

 s* = arg maxs w(s)

 Anarchy: no dictator; every player selfishly tries to optimize his/her own 

expected utility, disregarding the welfare of the other players

 Get a strategy profile s (e.g., a Nash equilibrium)

 In general, w(s) ≤ w(s*)

Price of Anarchy (PoA) = maxs is Nash equilibrium w(s*) / w(s)

 PoA is the most popular measure of inefficiency of equilibria.

 We are generally interested in PoA which is closer to 1, i.e., all equilibria are 

good approximations of an optimal solution.



The Price of Anarchy

 Example: the Chocolate Game

 Utilitarian welfare function:

w(s) = average expected utility

 Social optimum:  s* = (T3,T3)

 w (s*) = 3

 Anarchy:  s = (T1,T1)

 w(s) = 1

 Price of anarchy

= w(s*) / w(s) = 3/1 = 3

 What would the answer be if we used the egalitarian welfare function?

T 3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1

T3 T1

T3 3, 3 0, 4

T1 4, 0 1, 1



The Price of Anarchy

 Sometimes instead of maximizing a welfare function w,

we want to minimize a cost function c (e.g. in Prisoner’s Dilemma)

 Utilitarian function: c(s) = avg. expected cost

 Egalitarian function: c(s) = max. expected cost

 Need to adjust the definitions

 Social optimum:    s* = arg mins c(s)

 Anarchy: every player selfishly tries to minimize his/her own 

cost, disregarding the costs of the other players

• Get a strategy profile s (e.g., a Nash equilibrium)

• In general, c(s) ≥ c(s*)

 Price of Anarchy (PoA) = maxs is Nash equilibrium c(s) / c(s*)

• i.e., the reciprocal of what we had before

• E.g. in Prisoner’s dilemma  PoA= 3

C D

C 3, 3 0, 5

D 5, 0 1, 1



Rationalizability

 A strategy is rationalizable if a perfectly rational agent could justifiably 

play it against perfectly rational opponents

 The formal definition complicated

 Informally:

 A strategy for agent i is rationalizable if it’s a best response to 

strategies that i could reasonably believe the other agents have

 To be reasonable, i’s beliefs must take into account

• the other agents’ knowledge of i’s rationality, 

• their knowledge of i’s knowledge of their rationality, 

• and so on so forth recursively

 A rationalizable strategy profile is a strategy profile that consists only of 

rationalizable strategies 



Rationalizability
 Every Nash equilibrium is composed of

rationalizable strategies

 Thus the set of rationalizable strategies 

(and strategy profiles) is always nonempty

Example: Which Side of the Road

 For Agent 1, the pure strategy s1 = Left is rationalizable because

 s1 = Left is 1’s best response if 2 uses s2 = Left,

 and 1 can reasonably believe 2 would rationally use s2 = Left, because

• s2 = Left is 2’s best response if 1 uses s1 = Left,

• and 2 can reasonably believe 1 would rationally use s1 = Left, 

because

› s1 = Left is 1’s best response if 2 uses s2 = Left,

› and 1 can reasonably believe 2 would rationally use s2 = Left, 

because

- … and so on so forth…

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



Rationalizability

 Some rationalizable strategies are

not part of any Nash equilibrium

Example: Matching Pennies

 For Agent 1, the pure strategy s1 = Heads is rationalizable because

 s1 = Heads is 1’s best response if 2 uses s2 = Heads,

 and 1 can reasonably believe 2 would rationally use s2 = Heads, because

• s2 = Heads is 2’s best response if 1 uses s1 = Tails, 

• and 2 can reasonably believe 1 would rationally use s1 = Tails, 

because

› s1 = Tails is 1’s best response if 2 uses s2 = Tails, 

› and 1 can reasonably believe 2 would rationally use s2 = Tails, 

because

- … and so on so forth…

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1



Common Knowledge

 The definition of common knowledge is recursive analogous to the 

definition of rationalizability

 A property p is common knowledge if 

 Everyone knows p

 Everyone knows that everyone knows p

 Everyone knows that everyone knows that everyone knows p

 …



We Aren’t Rational

 More evidence that we aren’t game-theoretically rational agents

 Why choose an “irrational” strategy?

 Several possible reasons …



Reasons for Choosing “Irrational” Strategies

(1) Limitations in reasoning ability

 Didn’t calculate the Nash equilibrium correctly

 Don’t know how to calculate it

 Don’t even know the concept

(2) Wrong payoff matrix - doesn’t encode agent’s actual preferences

 It’s a common error to take an external measure (money, points, etc.) 

and assume it’s all that an agent cares about

 Other things may be more important than winning

• Being helpful

• Curiosity

• Creating mischief 

• Venting frustration

(3) Beliefs about the other agents’ likely actions (next slide)



Beliefs about Other Agents’ Actions

 A Nash equilibrium strategy is best for you if the other agents also use their 

Nash equilibrium strategies

 In many cases, the other agents won’t use Nash equilibrium strategies

 If you can guess what actions they’ll choose, then 

• You can compute your best response to those actions

› maximize your expected payoff, given their actions

• Good guess => you may do much better than the Nash equilibrium

• Bad guess => you may do much worse



Worst-Case Expected Utility

 For agent i, the worst-case expected utility of a 

strategy si is the minimum over all possible 

combinations of strategies for the other agents:

 Example: Battle of the Sexes

 Wife’s strategy sw = {(p, Opera), (1 – p, Football)}

 Husband’s strategy sh = {(q, Opera), (1 – q, Football)}

 uw(p,q) = 2pq + (1 – p)(1 – q) = 3pq – p – q + 1

 For any fixed p, uw(p,q) is linear in q

• e.g., if p = ½, then uw(½,q) = ½ q + ½   

 0 ≤ q ≤ 1, so the min must be at q = 0 or q = 1 

• e.g., minq (½ q + ½) is at q = 0

 minq uw(p,q) = min (uw(p,0), uw(p,1)) = min (1 – p, 2p)

Husband

Wife
Opera Football

Opera 2, 1 0, 0

Football 0, 0 1, 2

mins-i  ui si,s-i( )

We can write uw(p,q) 

instead of uw(sw , sh ) 



Maxmin Strategies

 A maxmin strategy for agent i

 A strategy s1 that makes i’s worst-case expected utility as high as 

possible:

 This isn’t necessarily unique

 Often it is mixed

 Agent i’s maxmin value, or security level, is the maxmin strategy’s 

worst-case expected utility:

 For 2 players it simplifies to 

   

max
si

min
s- i

 ui si,s-i( )

argmax
si

min
s-i

 ui si,s-i( )

Also called maximin

 211 , minmax
21
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Example

 Wife’s and husband’s strategies

 sw = {(p, Opera), (1 – p, Football)}

 sh = {(q, Opera), (1 – q, Football)}

 Recall that wife’s worst-case expected utility is

minq uw(p,q) = min (1 – p, 2p)

 Find p that maximizes it

 Max is at 1 – p = 2p, i.e., p = 1/3

 Wife’s maxmin value is 1 – p = 2/3

 Wife’s maxmin strategy is

{(1/3, Opera), (2/3, Football)}

 Similarly,

 Husband’s maxmin value is 2/3

 Husband’s maxmin strategy is

{(2/3, Opera), (1/3, Football)} p

minq uw(p,q) 

2p 1 – p

Husband

Wife
Opera Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Minmax Strategies (in 2-Player Games)

 Minmax strategy and minmax value

 Duals of their maxmin counterparts 

 Suppose agent 1 wants to punish agent 2, regardless of how it 

affects agent 1’s own payoff

 Agent 1’s minmax strategy against agent 2

 A strategy s1 that minimizes the expected utility of 2’s best 

response to s1

 Agent 2’s minmax value is 2’s maximum expected utility if 

agent 1 plays his/her minmax strategy:

 Minmax strategy profile: both players use their minmax

strategies

min
s1

max
s2

 u2 s1, s2( )

argmin
s1

max
s2

 u2 s1, s2( )
Also called 

minimax



Example

 Wife’s and husband’s strategies

 sw = {(p, Opera), (1 – p, Football)}

 sh = {(q, Opera), (1 – q, Football)}

 uh(p,q) = pq + 2(1 – p)(1 – q) = 3pq – 2p – 2q + 2

 Given wife’s strategy p, husband’s expected utility is linear in q

 e.g., if p = ½, then uh(½,q) = –½ q + 1

 Max is at q = 0 or q = 1

maxq uh(p,q) =  (2–2p, p)

 Find p that minimizes this

 Min is at –2p + 2 = p  p = 2/3

 Husband/s minmax value is 2/3

 Wife’s minmax strategy is

{(2/3, Opera), (1/3, Football)}

2p 1 – p

Husband

Wife
Opera Football

Opera 2, 1 0, 0

Football 0, 0 1, 2

p

2 – 2p



Minmax Strategies in n-Agent Games

 In n-agent games (n > 2), agent i usually can’t minimize agent j’s payoff by 

acting unilaterally

 But suppose all the agents “gang up” on agent j

 Let s*
−j be a mixed-strategy profile that minimizes j’s maximum payoff, 

i.e., 

 For every agent i ≠ j, a minmax strategy for i is i’s component of s-j*

 Agent j’s minmax value is j’s maximum payoff against s–j*

 We have equality since we just replaced s–j* by its value above

max
s j

 uj s j,s- j

*( ) = min
s- j

max
s j

 uj s j,s- j( )

s- j

* = argmin
s- j

max
s j

 uj s j, s- j( )
æ

è
ç

ö

ø
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Minimax Theorem (von Neumann, 1928)

 Theorem. Let G be any finite two-player zero-sum game.  For each player i,

 i’s expected utility in any Nash equilibrium

= i’s maxmin value 

= i’s minmax value

 In other words, for every Nash equilibrium (s1*, s2*),

- Note that since -u2= u1 the third term does not mention u2

 Corollary. For two-player zer-sum games:{Nash equilibria} = {maxmin

strategy profiles}= {minmax strategy profiles}

 Note that this is not necessary true for non-zero-sum games as we saw for 

Battle of Sexes in previous slides

 Terminology: the value (or minmax value) of G is agent 1’s minmax value

),(),(minmax),(maxmin),( *
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Proof of Minimax Theorem

 Let-u2=u1 = u and let mixed strategies 𝑠1 = x = x1, … , xk and s2 = y =
y1, … , yr .

 Then u 𝑥, 𝑦 =  𝑖 𝑗 𝑥𝑖𝑦𝑗𝑢𝑖,𝑗= 𝑗 𝑦𝑗  𝑖 𝑥𝑖𝑢𝑖,𝑗

 We want to find  𝑥∗ which optimizes 𝑣1 = max𝑥min
𝑦
𝑢(x,y) 

 Since player 2 is doing his best response (in min
𝑦
𝑢(x,y) ) he sets 𝑦𝑗 > 0 only 

if  𝑖 𝑥𝑖𝑢𝑖,𝑗 is minimized.

Thus 𝑣1=  𝑗 𝑖 𝑥𝑖𝑦𝑗𝑢𝑖,𝑗 = ( 𝑗 𝑦𝑗)min𝑗 𝑖 𝑥𝑖𝑢𝑖,𝑗 = min
j
 𝑖 𝑥𝑖𝑢𝑖,𝑗 ≤  𝑖 𝑥𝑖𝑢𝑖,𝑗

for any j 

Thus we have the following LP1 to find  𝑥∗

max 𝑣1

such that 𝑣1 ≤  𝑖 𝑥𝑖𝑢𝑖,𝑗 for all j

 𝑖 𝑥𝑖 = 1

𝑥𝑖≥ 0



Proof of Minimax Theorem (continued)

 Similarly for 𝑣2 = min𝑦max
𝑥
𝑢(x,y) we have LP2

min 𝑣2

such that 𝑣2 ≥  𝑗 𝑦𝑗𝑢𝑖,𝑗 for all i

 𝑗 𝑦𝑗 = 1

𝑦𝑗≥ 0

 But LP1 And LP2 are duals of each other and by the (strong) duality 

theorem 𝑣1 = 𝑣2

 Also note that if (x,y) is a Nash equilibrium, x should satisfy LP1 (since we 

used only the fact that y is a best response to x in the proof) and y should 

satisfy LP2 (since we used only the fact that x is a best response to y in the 

proof) and thus 𝑢1 𝑥, 𝑦 = 𝑣1 = 𝑣2



Dominant Strategies

 Let si and si be two strategies for agent i

 Intuitively, si dominates si if agent i does better with si than with si

for every strategy profile s−i of the remaining agents

Mathematically, there are three gradations of dominance:

 si strictly dominates si if for every s−i ,

ui (si, s−i) > ui (si, s−i)

 si weakly dominates si if for every s−i ,

ui (si, s−i) ≥ ui (si, s−i)

and for at least one s−i ,

ui (si, s−i ) > ui (si, s−i ) 

 si very weakly dominates si if for every s−i ,

ui (si, s−i ) ≥ ui (si, s−i)



Dominant Strategy Equilibria

 A strategy is strictly (resp., weakly, very weakly) dominant for an agent 

if it strictly (weakly, very weakly) dominates any other strategy for that 

agent

 A strategy profile (s1, . . . , sn) in which every si is dominant for agent i

(strictly, weakly, or very weakly) is a Nash equilibrium

• Why?

 Such a strategy profile forms an equilibrium in strictly (weakly, very 

weakly) dominant strategies



Examples

 Example: the Prisoner’s Dilemma

 http://www.youtube.com/watch?v=ED9gaAb2BEw

 For agent 1, D is strictly dominant

 If agent 2 uses C, then

• Agent 1’s payoff is higher with D than with C

 If agent 2 uses D, then

• Agent 1’s payoff is higher with D than with C

 Similarly, D is strictly dominant for agent 2

 So (D,D) is a Nash equilibrium in strictly dominant strategies

 How do strictly dominant strategies relate to strict Nash equilibria?

C D

C 3, 3 0, 5

D 5, 0 1, 1

C D

C 3, 3 0, 5

D 5, 0 1, 1

http://www.youtube.com/watch?v=ED9gaAb2BEw


Example: Matching Pennies

 Matching Pennies

 If agent 2 uses Heads, then

• For agent 1, Heads is better than Tails

 If agent 2 uses Tails, then

• For agent 1, Tails is better than Heads

 Agent 1 doesn’t have a dominant strategy

=> no Nash equilibrium in dominant strategies

 Which Side of the Road

 Same kind of argument as above

 No Nash equilibrium in dominant strategies

Heads Tails

Heads 1, –1 –1, 1

Tails –1, 1 1, –1

Left Right

Left 1, 1 0, 0

Right 0, 0 1, 1



L

D 5, 1

Elimination of Strictly Dominated Strategies

 A strategy si is strictly (weakly, very weakly) dominated for an agent i

if some other strategy si strictly (weakly, very weakly) dominates si

 A strictly dominated strategy can’t be a best

response to any move, so we can eliminate it

(remove it from the payoff matrix)

 This gives a reduced game 

 Other strategies may now be strictly dominated,

even if they weren’t dominated before

 IESDS (Iterated Elimination of Strictly Dominated Strategies):

 Do elimination repeatedly until no more eliminations are possible

 When no more eliminations are possible, we have

the maximal reduction of the original game

L R

U 3, 3 0, 5

D 5, 1 1, 0

L R

D 5, 1 1, 0



 If you eliminate a strictly dominated strategy, the reduced 

game has the same Nash equilibria as the original one

 Thus

{Nash equilibria of the original game}

= {Nash equilibria of the maximally reduced game} 

 Use this technique to simplify finding Nash equilibria

 Look for Nash equilibria on the maximally reduced game

 In the example, we ended up with a single cell

 The single cell must be a unique Nash equilibrium

in all three of the games

IESDS

L R

U 3, 3 0, 5

D 5, 1 1, 0

L R

D 5, 1 1, 0

L

D 5, 1



IESDS

 Even if si isn’t strictly dominated by a pure

strategy, it may be strictly dominated by a

mixed strategy

 Example: the three games shown at right

 1st game:

• R is strictly dominated by L (and by C)

• Eliminate it, get 2nd game

 2nd game:

• Neither U nor D dominates M

• But {(½, U), (½, D)} strictly dominates M

› This wasn’t true before we removed R

• Eliminate it, get 3rd game

 3rd game is maximally reduced 

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

L C

U 3, 1 0, 1

D 0, 1 4, 1



If there is intelligent life on other planets, in a majority of 

them, they would have discovered correlated equilibrium 

before Nash  equilibrium.

----Roger Myerson

Correlated Equilibrium: Pithy Quote



 Not every correlated equilibrium is a Nash equilibrium but 

every Nash equilibrium is a correlated equilibrium

We have a traffic light: a fair randomizing device that tells one 

of the agents to go and the other to wait.

 Benefits:

 easier to compute than Nash, e.g., it is polynomial-time 

computable

 fairness is achieved

 the sum of social welfare exceeds that of any Nash 

equilibrium

Correlated Equilibrium: Intuition



Correlated Equilibrium

 Recall the mixed-strategy equilibrium

for the Battle of the Sexes

 sw = {(2/3, Opera), (1/3, Football)}

 sh = {(1/3, Opera), (2/3, Football)}

 This is “fair”: each agent is equally likely to get his/her preferred activity

 But 5/9 of the time, they’ll choose different activities => utility 0 for both

 Thus each agent’s expected utility is only 2/3

 We’ve required them to make their choices independently

 Coordinate their choices (e.g., flip a coin) => eliminate cases where they 

choose different activities

 Each agent’s payoff will always be 1 or 2; expected utility 1.5

 Solution concept: correlated equilibrium

 Generalization of a Nash equilibrium

Husband

Wife

Oper

a
Football

Opera 2, 1 0, 0

Football 0, 0 1, 2



Correlated Equilibrium Definition

 Let G be an 2-agent game (for now).

 Recall that in a (mixed) Nash Equilibrium at the end we compute a 

probability matrix (also known as joint probability distribution) 𝑃 = [𝑝𝑖,𝑗] 

where Σ𝑖,𝑗𝑝𝑖,𝑗 = 1 and in addition 𝑝𝑖,𝑗 = 𝑞𝑖 . 𝑞𝑗
′ where Σ𝑖𝑞𝑖 = 1 and 

Σ𝑗𝑞𝑗
′ = 1 (here 𝑞 and 𝑞′ are the mixed strategies of the first agent and the 

second agent). 

 Now if we remove the constraint 𝑝𝑖,𝑗 = 𝑞𝑖 . 𝑞𝑗
′ (and thus Σ𝑖𝑞𝑖 = 1 and 

Σ𝑗𝑞𝑗
′ = 1) but still  keep all other properties of Nash Equilibrium then we 

have a Correlated Equilibrium.

 Surely it is clear that by this definition of Correlated Equilibrium, every 

Nash Equilibrium is a Correlated Equilibrium as well but note vice versa.

 Even for a more general 𝑛-player game, we can compute a Correlated 

Equilibrium in polynomial time by a linear program (as we see in the next 

slide).

 Indeed the constraint 𝑝𝑖,𝑗 = 𝑞𝑖 . 𝑞𝑗
′ is the one that makes computing Nash 

Equilibrium  harder.





Motivation of Correlated Equilibrium

 Let G be an n-agent game

 Let “Nature”(e.g., a traffic light) choose action profile a = (a1, …, an) 

randomly according to our computed joint probability distribution 

(Correlated Equilibirum) 𝑝.

 Then “Nature” tells each agent i the value of ai (privately)

 An agent can condition his/her action based on (private) value ai

 However by the definition of best response in Nash Equilibrium (which 

also exists in Correlated Equilibrium), agent i will not deviate from 

suggested action ai

 Note that here we implicitly assume because other agents are rational as 

well, they choose the suggested actions by the “Nature” which are 

given to them privately. 

 Since there is no randomization in the actions, the correlated equilibrium 

might seem more natural.



Auctions
 An auction is a way (other than bargaining) to sell a fixed supply of a 

commodity (an item to be sold) for which there is no well-established 

ongoing market

 Bidders make bids

 proposals to pay various amounts of money for the commodity

 Often the commodity is sold to the bidder who makes the largest bid

 Example applications

 Real estate, art, oil leases, electromagnetic spectrum, electricity, eBay, 

google ads

 Private-value auctions

• Each bidder may have a different bidder value or bidder valuation (BV), 

i.e., how much the commodity is worth to that bidder

• A bidder’s BV is his/her private information, not known to others

• E.g., flowers, art, antiques



Types of Auctions

 Classification according to the rules for bidding

• English

• Dutch

• First price sealed bid

• Vickrey

• many others

 On the following pages, I’ll describe several of these and will analyze their 

equilibria

 A possible problem is collusion (secret agreements for fraudulent purposes)

 Groups of bidders who won’t bid against each other, to keep the price low

 Bidders who place phony (phantom) bids to raise the price (hence the 

auctioneer’s profit)

 If there’s collusion, the equilibrium analysis is no longer valid



English Auction

 The name comes from oral auctions in English-speaking countries, but I think this 

kind of auction was also used in ancient Rome

 Commodities: 

 antiques, artworks, cattle, horses, wholesale fruits and vegetables, old books, etc.

 Typical rules:

 Auctioneer solicits an opening bid from the group

 Anyone who wants to bid should call out a new price at least c higher than the 

previous high bid (e.g., c = 1 dollar)

 The bidding continues until all bidders but one have dropped out

 The highest bidder gets the object being sold, for a price equal to his/her final bid

 For each bidder i, let

 vi = i’s valuation of the commodity (private information)

 Bi = i’s final bid

 If i wins, then i’s profit is πi = vi – Bi and everyone else’s profit = 0



English Auction (continued)

 Nash equilibrium:

 Each bidder i participates until the bidding reaches vi ,

then drops out

 The highest bidder, i, gets the object, at price Bi < vi , so πi = Bi – vi > 0

• Bi is close to the second highest bidder’s valuation

 For every bidder j ≠ i, πj = 0

 Why is this an equilibrium?

 Suppose bidder j deviates and none of the other bidders deviate

 If j deviates by dropping out earlier, 

• Then j’s profit will be 0, no better than before

 If u deviates by bidding Bi > vj, then

• j win’s the auction but j’s profit is vj – Bj < 0, worse than before



English Auction (continued)

 If there is a large range of bidder valuations, then the difference between 

the highest and 2nd-highest valuations may be large

 Thus if there’s wide disagreement about the item’s value, the winner 

might be able to get it for much less than his/her valuation

 Let n be the number of bidders

 The higher n is, the more likely it is that the highest and 2nd-highest 

valuations are close 

• Thus, the more likely it is that the winner pays close to his/her 

valuation



First-Price Sealed-Bid Auctions

 Examples:

 construction contracts (lowest bidder)

 real estate

 art treasures

 Typical rules

 Bidders write their bids for the object and their names on slips of 

paper and deliver them to the auctioneer

 The auctioneer opens the bid and finds the highest bidder

 The highest bidder gets the object being sold, for a price equal to 

his/her own bid

 Winner’s profit = BV– price paid

 Everyone else’s profit = 0



First-Price Sealed-Bid (continued)

 Suppose that

 There are n bidders

 Each bidder has a private valuation, vi, which is private information

 But a probability distribution for vi is common knowledge

• Let’s say vi is uniformly distributed over [0, 100]

 Let Bi denote the bid of player i

 Let πi denote the profit of player i

 What is the Nash equilibrium bidding strategy for the players?

 Need to find the optimal bidding strategies

 First we’ll look at the case where n = 2



First-Price Sealed-Bid (continued)

 Finding the optimal bidding strategies

 Let Bi be agent i’s bid, and πi be agent i’s profit

 If Bi ≥ vi, then πi ≤ 0

• So, assuming rationality, Bi < vi

 Thus

• πi = 0 if Bi ≠ maxj {Bj}

• πi = vi − Bi if Bi = maxj {Bj}

 How much below vi should your bid be?

 The smaller Bi is,

• the less likely that i will win the object

• the more profit i will make if i wins the object



First-Price Sealed-Bid (continued)
 Case n = 2

 Suppose your BV is v and your bid is B

 Let x be the other bidder’s BV

and αx be his/her bid, where 0 < α < 1

• You don’t know the values of x and α

 Your expected profit is

• E(π) = P(your bid is higher)·(v−B) + P(your bid is lower)·0

 If x is uniformly distributed over [0, 100], then the pdf is f(x) = 1/100, 0 ≤ x ≤ 100

 P(your bid is higher) = P(αx < B) = P(x < B/α) = 0
B/α (1/100) dx = B/100α

 so E(π) = B(v – B)/100α

 If you want to maximize your expected profit (hence your valuation of money is 

risk-neutral), then your maximum bid is

• maxB B(v−B)/100α = maxB B(v−B) = maxB Bv − B2

• maximum occurs when v – 2B = 0  =>  B = v/2

 So, bid ½ of what the item is worth to you!



First-Price Sealed-Bid (continued)

 With n bidders, if your bid is B, then 

 P(your bid is the highest) = (B/100α)n–1

 Assuming risk neutrality, you choose your bid to be

• maxB Bn−1(v−B) = v(n−1)/n

 As n increases, B → v

 I.e., increased competition drives bids close to the valuations



Dutch Auctions

 Examples

 flowers in the Netherlands, fish market in England and Israel, tobacco market 

in Canada

 Typical rules

 Auctioneer starts with a high price

 Auctioneer lowers the price gradually, until some buyer shouts “Mine!”

 The first buyer to shout “Mine!” gets the object at the price the auctioneer just 

called

 Winner’s profit = BV – price

 Everyone else’s profit = 0

 Dutch auctions are game-theoretically equivalent to first-price, sealed-bid auctions

 The object goes to the highest bidder at the highest price

 A bidder must choose a bid without knowing the bids of any other bidders

 The optimal bidding strategies are the same



Sealed-Bid, Second-Price Auctions

 Background: Vickrey (1961)

 Used for

 stamp collectors’ auctions 

 US Treasury’s long-term bonds 

 Airwaves auction in New Zealand 

 eBay and Amazon

 Typical rules

 Bidders write their bids for the object and their names on slips of paper and 

deliver them to the auctioneer

 The auctioneer opens the bid and finds the highest bidder

 The highest bidder gets the object being sold, for a price equal to the second 

highest bid

 Winner’s profit = BV – price

 Everyone else’s profit = 0



Sealed-Bid, Second-Price (continued)

 Equilibrium bidding strategy:

 It is a weakly dominant strategy to bid your true value: This property is also 

called truthfulness or strategyproofness of an auction.

 To show this, need to show that overbidding or underbidding cannot increase your 

profit and might decrease it.

 Let V be your valuation of the object, and X be the highest bid made by anyone else

 Let sV be the strategy of bidding V, and πV be your profit when using sV

 Let sB be a strategy that bids some B ≠ V, and πB be your profit when using sB

 There are 3! = 6 possible numeric orderings of B, V, and X:

 Case 1, X > B > V:  You don’t get the commodity either way, so πB = πV = 0.

 Case 2, B > X > V:  πB = V − X < 0, but πV = 0

 Case 3, B > V > X:  you pay X rather than your bid, so πB = πV = V − X > 0

 Case 4, X < B < V: you pay X rather than your bid, so πB = πV = V − X > 0

 Case 5, B < X < V:  πB = 0, but πV = V − X > 0

 Case 6, B < V < X:  You don’t get the commodity either way, so  πB = πV = 0



Sealed-Bid, Second-Price (continued)

 Sealed-bid, 2nd-price auctions are nearly equivalent to English auctions

 The object goes to the highest bidder

 Price is close to the second highest BV (close since the second highest 

bids just a bit below his actual BV)



Coalitional Games with Transferable Utility 

 Given a set of agents, a coalitional game defines how well each group (or 

coalition) of agents can do for itself—its payoff 

 Not concerned with 

• how the agents make individual choices within a coalition, 

• how they coordinate, or 

• any other such detail 

 Transferable utility assumption: the payoffs to a coalition may be freely 

redistributed among its members

 Satisfied whenever there is a universal currency that is used for 

exchange in the system 

 Implies that each coalition can be assigned a single value as its payoff



Coalitional Games with Transferable Utility 

 A coalitional game with transferable utility is a pair G = (N,v), where

 N = {1, 2, …, n} is a finite set of players

 (nu) v : 2N  associates with each coalition S ⊆ N a real-valued 

payoff v(S), that the coalition members can distribute among 

themselves

 v is the characteristic function

 We assume v() = 0 and that v is non-negative.

 A coalition’s payoff is also called its worth

 Coalitional game theory is normally used to answer two questions:

(1) Which coalition will form?

(2) How should that coalition divide its payoff among its members?

 The answer to (1) is often “the grand coalition” (all of the agents) 

 But this answer can depend on making the right choice about (2)



Example: A Voting Game

 Consider a parliament that contains 100 representatives from four political 

parties:

 A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.) 

 They’re going to vote on whether to pass a $100 million spending bill|

(and how much of it should be controlled by each party)

 Need a majority (≥ 51 votes) to pass legislation

 If the bill doesn’t pass, then every party gets 0 

 More generally, a voting game would include

 a set of agents N

 a set of winning coalitions W  2N

• In the example, all coalitions that have enough votes to pass the bill

 v(S) = 1 for each coalition S  W

• Or equivalently, we could use v(S) = $100 million

 v(S) = 0 for each coalition S  W



Superadditive Games

 A coalitional game G = (N,v) is superadditive if the union of two disjoint 

coalitions is worth at least the sum of its members’ worths

 for all S, T  N, if S  T = , then v (S ∪ T) ≥ v (S ) + v (T ) 

 The voting-game example is superadditive

 If S  T = , v(S) = 0, and v(T) = 0, then v(S ∪ T) ≥ 0

 If S  T =  and v(S) = 1, then v(T) = 0 and v(S ∪ T ) = 1

 Hence v(S ∪ T) ≥ v(S ) + v(T ) 

 If G is superadditive, the grand coalition always has the highest possible 

payoff

 For any S ≠ N,  v(N) ≥ v(S) + v(N–S) ≥ v(S)

 G = (N,v) is additive (or inessential) if

• For S, T  N and S  T = , then v(S ∪ T ) = v(S ) + v(T ) 



Constant-Sum Games

 G is constant-sum if the worth of the grand coalition equals the sum of the 

worths of any two coalitions that partition N

• v(S) + v(N – S) = v(N), for every S  N

 Every additive game is constant-sum

 additive  =>   v(S) + v(N – S) = v(S ∪(N – S)) = v(N)

 But not every constant-sum game is additive

 Example is a good exercise



Convex Games

 G is convex (supermodular) if for all S,T  N,

• v(S ∪ T) + v(S  T) ≥ v(S) + v(T)

 It can be shown the above definition is equivalent to for all i in N  and for 

all S  T  N-{i}, 

 v(T ∪ {i})- v(T) ≥ v(S ∪ {i}) - v(S)

 Prove it as an exercise

 Recall the definition of a superadditive game:

 for all S,T  N, if S  T = , then v (S ∪ T) ≥ v (S ) + v (T ) 

 It follows immediately that every super-additive game is a convex game



Simple Coalitional Games

 A game G = (N, v) is simple for every coalition S, 

• either v(S) = 1 (i.e., S wins) or v(S) = 0 (i.e., S loses)

 Used to model voting situations (e.g., the example earlier)

 Often add a requirement that if S wins, all supersets of S would also win:

• if v(S) = 1, then for all T ⊇ S, v(T) = 1

 This doesn’t quite imply superadditivity

 Consider a voting game G in which 50% of the votes is sufficient to 

pass a bill

 Two coalitions S and T, each is exactly 50% N

 v(S) = 1  and  v(T) = 1  

 But v(S  T) ≠ 2



Proper-Simple Games

 G is a proper simple game if it is both simple and constant-sum

 If S is a winning coalition, then N – S is a losing coalition

• v(S) + v(N – S) = 1, so if v(S) = 1 then v(N – S) = 0

 Relations among the classes of games:

{Additive games}  {Super-additive  games}  {Convex games}

{Additive games}  {Constant-sum game}

{Proper-simple games}  {Constant-sum games}

{Proper-simple games}  {Simple game}



Analyzing Coalitional Games
Main question in coalitional game theory

 How to divide the payoff to the grand coalition?

Why focus on the grand coalition? 

 Many widely studied games are super-additive

• Expect the grand coalition to form because it has the highest payoff

 Agents may be required to join

• E.g., public projects often legally bound to include all participants 

 Given a coalitional game G = (N, v), where N = {1, …, n}

 We’ll want to look at the agents’ shares in the grand coalition’s payoff 

• The book writes this as (Psi) ψ(N,v) = x = (x1, …, xn), where ψi(N,v)

= xi is the agent’s payoff

 We won’t use the ψ notation much

• Can be useful for talking about several different coalitional games at 

once, but we usually won’t be doing that



Terminology

 Feasible payoff set

= {all payoff profiles that don’t distribute more than the worth of the 

grand coalition}

= {(x1, …, xn) | x1 + x2 + … +  xn} ≤ v(N)

 Pre-imputation set

= {feasible payoff profiles that are efficient, i.e., distribute the entire 

worth of the grand coalition}

= {(x1, …, xn) | x1 + x2 + … +  xn} = v(N)

 Imputation set

= {payoffs in in which each agent gets

at least what he/she would get by going

alone (i.e., forming a singleton coalition)}

= {(x1, …, xn)  : i  N, xi ≥ v({i})}

im•pute:  verb [ trans. ]

represent as being done, 

caused, or possessed by 

someone; attribute : the 

crimes imputed to Richard.



Fairness, Symmetry

 What is a fair division of the payoffs?

 Three axioms describing fairness

• Symmetry, dummy player, and additivity axioms

 Definition: agents i and j are interchangeable if they always contribute the 

same amount to every coalition of the other agents

 i.e., for every S that contains neither i nor j , v(S ∪{i}) = v (S ∪{j})

 Symmetry axiom: in a fair division of the payoffs, interchangeable agents 

should receive the same payments, i.e.,

 if i and j are interchangeable and (x1, …, xn) is the payoff profile, then 

xi = xj



Dummy Players

 Agent i is a dummy player if i’s contributes to any coalition is exactly 

the amount i can achieve alone 

 i.e., for all S s.t. i ∉ S, v(S ∪ {i}) = v(S) + v({i})

 Dummy player axiom: in a fair distribution of payoffs, dummy players 

should receive payment equal to the amount they achieve on their own

 i.e., if i is a dummy player and (x1, …, xn) is the payoff profile, then 

xi = v({i})



Additivity

 Let G1 = (N, v1)  and  G2 = (N, v2)  be two coalitional games with the same 

agents

 Consider the combined game G = (N, v1 + v2), where

 (v1 + v2)(S) = v1(S) + v2(S)

 Additivity axiom: in a fair distribution of payoffs for G, the agents should 

get the sum of what they would get in the two separate games

 i.e., for each player i,  ψi(N, v1 + v2) = ψi(N, v1) + ψi(N, v2)



Shapley Values

 Recall that a pre-imputation is a payoff division that is both feasible and 

efficient 

 Theorem. Given a coalitional game (N,v), there’s a unique pre-imputation 

(N,v) that satisfies the Symmetry, Dummy player, and Additivity axioms. 

For each player i, i’s share of φ(N,v) is

 i(N,v) is called i’s Shapley value

 Lloyd Shapley introduced it in 1953

 It captures agent i’s average marginal contribution

 The average contribution that i makes to the coalition, averaged over 

every possible sequence in which the grand coalition can be built up 

from the empty coalition 



Shapley Values

 Suppose agents join the grand coalition one by one, all sequences equally likely

 Let S = {agents that joined before i} and  T = {agents that joined after i}

 i’s marginal contribution is  v(S∪{i}) − v(S)

• independent of how S is ordered, independent of how T is ordered

 Pr[S, then i, then T]

= (# of sequences that include S then i then T) / (total # of sequences)

= |S|! |T|! / |N|!

 Let i,S = Pr[S, then i, then T]  i’s marginal contribution when it joins

 Then

 Let i (N,v) = expected contribution over all possible sequences

 Then

ji,S =
S ! ( N - S -1)!

N !
(v(SÈ{i})- v(S))

ji N,v( ) = ji,S

SÍN-{i}

å =
1

N !
S ! (N - S -1)! (v(SÈ{i})- v(S))

SÍN-{i}

å



Example

 The voting game again

 Parties A, B, C, and D have 45, 25, 15, and 15 representatives

 A simple majority (51 votes) is required to pass the $100M bill

 How much money is it fair for each party to demand?

 Calculate the Shapley values of the game

 Every coalition with ≥ 51 members has value 1; other coalitions have value 0

 Recall what it means for two agents i and j to be interchangeable:

 for every S that contains neither i nor j , v (S ∪{i}) = v (S ∪{j})

 B and C are interchangeable

 Each adds 0 to  , 1 to {A}, 0 to {D}, and 0 to {A,D}

 Similarly, B and D are interchangeable, and so are C and D

 So the fairness axiom says that B, C, and D should each get the same amount



 Recall that

 In the example, it will be useful to let 'i,S be the term inside the summation

 Hence 'i,S = |N|!i,S

 Let’s compute A(N, v)

 N = |{A,B,C,D}| = 4, so

 S may be any of the following:

 , {B}, {C}, {D}, {B,C}, {B,D}, {C,D}

 We need to sum over all of them:

jA N,v( ) =
1

4!
( ¢jA,Æ + ¢jA,{B} + ¢jA,{C} + ¢jA,{D} + ¢jA,{B,C} + ¢jA,{B,D} + ¢jA,{C,D} + ¢jA,{B,C,D})

¢jA,S = S ! (3- S )! (v(SÈA)-v(S))

ji,S =
S ! ( N - S -1)!(v(SÈ{i})- v(S))

N !

ji N,v( ) = ji,S

SÍN-{i}

å =
1

N !
S ! ( N - S -1)! (v(SÈ{i})- v(S))

SÍN-{i}

å



S =   v({A}) – v() = 0 – 0 = 0  'A, = 0! 3! 0 = 0

S = {B}  v({A,B}) – v({B}) = 1 – 0 = 1  'A,{B} = 1! 2! 1 = 2

S = {C}  same

S = {D}  same

S = {B,C}  v({A,B,C}) – v({B,C}) = 1 – 0 = 1  'A,{B,C} = 2! 1! 1 = 2

S = {B,D}  same

S = {C,D}  same

S = {B,C,D}  v({A,B,C,D}) – v({B,C,D}) = 1 – 1 = 0  'A,{B,C,D} = 3! 0! 0 = 0

¢jA,S = S ! (3- S )! (v(SÈA)-v(S))

jA N,v( ) =
1

4!
( ¢jA,Æ + ¢jA,{B} + ¢jA,{C} + ¢jA,{D} + ¢jA,{B,C} + ¢jA,{B,D} + ¢jA,{C,D} + ¢jA,{B,C,D})

=
1

24
(0 + 2 + 2 + 2 + 2 + 2 + 2 + 0) =12 / 24 =1/ 2

A has 45 members  

B has 25 members  

C has 15 members  

D has 15 members



 Similarly, B = C = D = 1/6

 The text calculates it using Shapley’s formula

 Here’s another way to get it:

 If A gets ½, then the other ½ will be divided among B, C, and D

 They are interchangeable, so a fair division will give them equal 

amounts: 1/6 each

 So distribute the money as follows:

 A gets (1/2) $100M = $50M

 B, C, D each get (1/6) $100M = $16 2
3 M



Stability of the Grand Coalition

 Agents have incentive to form the grand coalition iff there aren’t any 

smaller coalitions in which they could get higher payoffs

 Sometimes a subset of the agents may prefer a smaller coalition

 Recall the Shapley values for our voting example:

• A gets $50M; B, C, D each get $

 A on its own can’t do better

 But {A, B} have incentive to defect and divide the $100M

• e.g., $75M for A and $25M for B

 What payment divisions would make the agents want to join the grand 

coalition?

  

16 2
3 M



The Core

 The core of a coalitional game includes every payoff vector x that gives 

every sub-coalition S at least as much in the grand coalition as S could get 

by itself

 All feasible payoff vectors x = (x1, …, xn) such that for every S  N,

 For every payoff vector x in the core, no S has any incentive to deviate 

from the grand coalition

 i.e., form their own coalition, excluding the others

 It follows immediately that if x is in the core then x is efficient

 Why?

xi
iÎS

å ³ v S( )



Analogy to Nash Equilibria

 The core is an analog of the set of all Nash equilibria in a noncooperative

game

 There, no agent can do better by deviating from the equilibrium

 But the core is stricter

 No set of agents can do better by deviating from the grand coalition

 Analogous to the set of strong Nash equilibria

 Equilibria in which no coalition of agents can do better by deviating

 Unlike the set of Nash equilibria, the core may sometimes be empty

 In some cases, no matter what the payoff vector is, some agent or group 

of agents has incentive to deviate



Example of an Empty Core

 Consider the voting example again:

 Shapley values are $50M to A, and $16.33M each to B, C, D

 The minimal coalitions that achieve 51 votes are 

› {A,B}, {A,C}, {A,D}, {B,C,D}

 If the sum of the payoffs to B, C, and D is < $100M, this set of agents has 

incentive to deviate from the grand coalition

 Thus if x is in the core, x must allocate $100M to {B, C, D}

 But if B, C, and D get the entire $100M, then A (getting $0) has 

incentive to join with whichever of B, C, and D got the least

• e.g., form a coalition {A,B} without the others

 So if x allocates the entire $100M to {B,C,D} then x cannot be in the 

core

 So the core is empty



Simple Games

 There are several situations in which the core is either guaranteed to exist, or 

guaranteed not to exist

 The first one involves simple games

 Recall: G is simple for every coalition S, either v(S) = 1 or v(S) = 0

 Player i is a veto player if v(S) = 0 for any S  N – {i} 

 Theorem. In a simple game, the core is empty iff there is no veto player

 Example: previous slide



Simple Games

 Theorem. In a simple game in which there are veto players, the core is 

{all payoff vectors in which non-veto players get 0}

 Example: consider a modified version of the voting game 

• An 80% majority is required to pass the bill 

 Recall that A, B, C, and D have 45, 25, 15, and 15 representatives

 The minimal winning coalitions are {A, B, C} and {A, B, D} 

 All winning coalitions must include both A and B 

 So A and B are veto players

• The core includes all distributions of the $100M among A and B

• Neither A nor B can do better by deviating



Non-Additive Constant-Sum Games

 Recall:

 G is constant-sum if for all S, v(S) + v(N – S) = v(N) 

 G is additive if v(S ∪ T ) = v(S ) + v(T ) whenever S and T are disjoint

 Theorem. Every non-additive constant-sum game has an empty core 

 Example: consider a constant-sum game G with 3 players a, b, c

 Suppose v(a) = 1, v(b) = 1, v(c) = 1, v({a,b,c})=4

 Then v(a) + v({b,c}) = v({a,b})+v(c) = v({a,c}) + v(b) = 4

 Thus v({b,c}) = 4 – 1 = 3 ≠ v(b) + v(c)

 So G is not additive

 Consider x = (1.333, 1.333, 1.333)

 v({a,b}) = 3, so if {a,b} deviate, they can allocate (1.5,1.5)

 To keep {a,b} from deviating, suppose we use x = (1.5, 1.5, 1)

 v({a,c}) = 3, so if {a,c} deviate, they can allocate (1.667, 1.333)



Convex Games

 Recall:

 G is convex if for all S,T  N,  v(S ∪ T) ≥ v(S) + v(T) – v(S  T)

 Theorem. Every convex game has a nonempty core

 Theorem. In every convex game, the Shapley value is in the core



Modified Parliament Example

 100 representatives from four political parties:

 A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.) 

 Any coalition of parties can approve a spending bill worth $1K times the 

number of representatives in the coalition:

v(A) = $45K,         v(B) = $25K,          v(C) = $15K,          v(D) = $15K,

v({A,B}) = $70K, v({A,C}) = $60K, v({A,D}) = $60K,

v({B,C}) = $40K,  v({B,D}) = $40K,  v({C,D}) = $30K, …

v({A,B,C,D}) = $100K 

 Is the game convex?

v S( ) = $1000 ´size(i)
iÎS

å



Modified Parliament Example

 Let S be the grand coalition

 What is each party’s Shapley value in S?

 Each party’s Shapley value is the average value it adds to S, averaged over 

all 24 of the possible sequences in which S might be formed:

A, B, C, D;       A, B, D, C; A, C, B, D; A, C, D, B; etc

 In every sequence, every party adds exactly $1K times its size 

 Thus every party’s Shapley value is $1K times its size:

 A = $45K, B = $25K, C = $15K, D = $15K



Modified Parliament Example

 Suppose we distribute v(S) by giving each party its Shapley value

 Does any party or group of parties have an incentive to leave and form a 

smaller coalition T?

 v(T) = $1K times the number of representatives in T

= the sum of the Shapley values of the parties in T

 If each party in T gets its Shapley value, it does no better in T than in S

 If some party in T gets more than its Shapley value, then another party 

in T will get less than its Shapley value

 No case in which every party in T does better in T than in S

 No case in which all of the parties in T will have an incentive to leave S and 

join T

 Thus the Shapley value is in the core


