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What is Game Theory?

Game Theory is about interactions among self-interested agents (players)

Different agents have different preferences (i.e. like some outcomes more
than others)

Note that game theory is not a tool; it is a set of concepts.
Goals of this course:
> Formal definitions and technicality of the algorithms
> Better understanding of real-world games




Algorithmic Game Theory

Algorithm Game Theory is often viewed as “incentive-aware algorithm
design’’

Algorithm design often deals with dumb objects though Algorithmic Game
Theory often deals with smart (self-interested) objects

Combines Algorithm Design and Game Theory
Also known as Mechanism Design
Goal of Mechanism Design

> Encourage selfish agents to act socially by designing rewarding rules
such that when agents optimize their own objective, a social objective is
met



Some Fields where Game Theory is Used

® Economics, business
> Markets, auctions
> Economic predictions

> Bargaining, fair division




Some Fields where Game Theory is Used

e Government, politics, military
> Negotiations
> Voting systems
> International relations
> War
>

parapet
(earth and sandbags)\

firestep
shell crater

World War 1
- drainage ditch army trench



Some Fields where Game Theory is Used

e Biology, psychology, sociology
> Population ratios, territoriality
> Social behavior
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Some Fields where Game Theory is Used

e Engineering, computer science
> (Game programs

> Computer and
communication networks

> Road networks
>

Overlay Network e S R P s ; "'°{:~' A-D: Main Street _
S SR |E: Staniford Street
W F: Charles Street
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Games In Normal Form

e A (finite, n-person) normal-form game includes the following:
1. Anordered set N =(1, 2, 3, ..., n) of agents or players:
2. Each agent i has a finite set A; of possible actions

 An action profile is an n-tuplea = (a;, a,, ..., a,), where a, € A,,
aEA, ..., a EA,

 The set of all possible action profilesis A=A; X---X A_
3. Each agent i has a real-valued utility (or payoff) function
U (@, . . ., a,) = I’s payoff if the action profile is (a,, . . ., a,)
@ Most other game representations

can be reduced to normal form take 3 take 1

e Usually represented by an n-dimensional

payoff (or utility) matrix take3 | 3,3 0,4

> for each action profile, shows the take 1 4,0 1,1

utilities of all the agents



The Prisoner’s Dilemma

e Scenario: The police are holding two prisoners
as suspects for committing a crime

>
>
>

Vo7t o V! V0"V

For each prisoner, the police have enough evidence for a 1 year prison sentence
They want to get enough evidence for a 4 year prison sentence
They tell each prisoner,

* “If you testify against the other prisoner, C D
we’ll reduce your prison sentence by 1 year”
C = Cooperate (with the other prisoner): C|-1-1/40

refuse to testify against him/her
D| 0,4 |-3,-3

D = Defect: testify against the other prisoner

Both prisoners cooperate => both go to prison for 1 year
Both prisoners defect => both go to prison for 4 — 1 = 3 years

One defects, other cooperates => cooperator goes to prison for 4 years; defector
goes free



Prisoner’s Dilemma

C D
Weused ¢ |_-1-1|-4 0
this:
D| 0,-4|-3-3 C D
C| aa | bc
take 3  takel ol cb 0 g
Equivalent: @ke3 | 3.3 0,4
takel | 4,0 1.1 e General form:
c>a>d>Db
C D 2a>b+c
Game
theorists c | 33 | 0,5
usually
usethiss D| 50 | 1,1




Utility Functions

Idea: the preferences of a rational agent must obey some constraints

Agent’s choices are based on rational preferences
= agent’s behavior is describable as maximization of expected utility

Constraints:
Orderability (sometimes called Completeness):
(A>B) v (B>A) v (A~B)
Transitivity:
(A>B)A(B>C) = (A>0C

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944).

Given preferences satisfying the constraints above, there exists a real-
valued function u such that

u(A)=zu(B) & A>B (*)
u is called a utility function



Utility Scales for Games

e Suppose that all the agents have rational preferences, and that this is
common knowledge™ to all of them

e® Then games are insensitive to positive affine transformations of one or
more agents’ payoffs

> Let cand d be constants,c >0
» For one or more agents i, replace every payoff x; with cx;; + d

> The game still models the same sets of rational preferences

dyq Ay, dyq Ay, dyq Ay,
Q11 | Xu1s Xo1 | X120 Xo2 | @gq | CXgptd, Xpp | CXpotd, Xy a1 | CXy+d, eXop+f | CXpptd, eXpyH
A1y | X1z Xo3 | X4 Xoq | 8gp | CXygHd, Xp5 | CXg4td, Xy a1y | CXy3td, eXpstf | CXyytd, exptf

*Common knowledge 1s a complicated topic; I’1l discuss it later



Common-payoff Games

e Common-payoff game:
> For every action profile, all agents have the same payoff
e Also called a pure coordination game or a team game
> Need to coordinate on an action that is maximally beneficial to all

e Which side of the road?
5 -
> 2 people driving toward each other

In a country with no traffic rules == .

> Each driver independently decides

whether to stay on the left or the right
Left Right

> Need to coordinate your action
with the action of the other driver Left | 1,1 0,0

Right| 0,0 | 1,1




A Brief Digression

e Mechanism design: set up the rules of the game, to give each agent an
Incentive to choose a desired outcome

e E.g., the law says what side of the road to drive on
> Sweden on September 3, 1967




Zero-sum Games

These games are purely competitive

Constant-sum game:
> For every action profile, the sum of the payoffs is the same, I.e.,
> there is a constant c such for every action profile a = (a,, ..., a,),
c U(d+...+u(a)=c

Any constant-sum game can be transformed into an equivalent game in
which the sum of the payoffs is always 0

> Positive affine transformation: subtract c/n from every payoff

Thus constant-sum games are usually called zero-sum games



Examples

e Matching Pennies

Heads Tails
> Two agents, each has a penny
> Each independently chooses 1,-1 1 -11
to display Heads or Tails ; 11 L
- If same, agent 1 gets both pennies ¢

N ONE
$on

 Otherwise agent 2 gets both pennies

e Penalty kicks in soccer
> A kicker and a goalie 2 . | ’ &
> Kicker can kick left or right ol r_,m

> Goalie can jump to left or right

> Kicker scores if he/she kicks to one
side and goalie jumps to the other




Another Example:Rock-Paper-Scissors

e WO players. Each simultaneously picks an action:
Rock, Paper, or Scissors.

e [he rewards:
Rock beats Scissors
Scissors beats Paper
Paper beats Rock

e [he matrices:



Nonzero-Sum Games

e® A game is nonconstant-sum (usually called nonzero-sum}
: : : C D
If there are action profiles a and b such that

« y(@+...+u(a) # uy(b)+... +u.(b) Cl 33|05
> e.g., the Prisoner’s Dilemma
e Battle of the Sexes

> Two agents need to coordinate their actions, )
but they have different preferences Q

ALY
&N -

» Another scenario: Husband:

> Original scenario:

 husband prefers football,
wife prefers opera

« Two nations must act together to Opera _Football
deal with an international crisis, Opera 2.1 0,0
and they prefer different solutions  Wife:

Football | 0,0 1,2




Symmetric Games

In a symmetric game, every agent has
the same actions and payoffs

> If we change which agent is which,
the payoff matrix will stay the same

For a 2x2 symmetric game,
it doesn’t matter whether agent 1 is
the row player or the column player

> The payoff matrix looks like this:

In the payoff matrix of a symmetric
game, we only need to display u,

> If you want to know another
agent’s payoff, just interchange
the agent with agent 1

Which side of the road?

Left Right
Left 1,1 0,0
Right| 0,0 1,1
a, a,
W, W X,y
Y, X Z,2Z
a Ay
W X
y Z




Strategies in Normal-Form Games

Pure strategy: select a single action and play it

> Each row or column of a payoff matrix represents both an action and a
pure strategy

Mixed strategy: randomize over the set of available actions according to
some probability distribution

> s;(a;) = probability that action a; will be played in mixed strategy s;
The support of s; = {actions that have probability > 0 in s;}
A pure strategy Is a special case of a mixed strategy

> support consists of a single action
A strategy s; is fully mixed if its support is A,

> 1.e., nonzero probability for every action available to agent i
Strategy profile: an n-tuple s = (s, ..., S,,) of strategies, one for each agent



Expected Utility

e A payoff matrix only gives payoffs for pure-strategy profiles
e Generalization to mixed strategies uses expected utility

> First calculate probability of each outcome,
given the strategy profile (involves all agents)

> Then calculate average payoff for agent i, weighted by the probabilities
> Given strategy profiles = (s, ..., S,)

« expected utility is the sum, over all action profiles, of the profile’s
utility times its probability:

u.(s)= é u,(a)Pr[a|s]

l.e.,

n

ul_(sl,...,sn) - | u(a,....a,) P Sj(aj)

(ay,ma,)l A J=1



Some Comments about Normal-Form Games

e Only two Kkinds of strategies in the normal-form game representation:

> Pure strategy: just a single action

> Mixed strategy: probability distribution over pure strategies

* 1.e., choose an action at random from the probability distribution

e The normal-form game representation may see very restricted

> No such thing as a conditional strategy
(e.g., cross the bay if the temperature is above 70)

> No temperature or anything else to observe

e However much more complicated games can be mapped into normal-form

games

> Each pure strategy is a description of what you’ll do in every situation

you might ever encounter in the game
e In later sessions, we see more examples

C

D

C D
3,3 | 0,5
5,0 | 1,1




How to reason about games?

In single-agent decision theory, look at an optimal strategy

> Maximize the agent’s expected payoff in its environment

With multiple agents, the best strategy depends on others’ choices

Deal with this by identifying certain subsets of outcomes called solution
concepts

First we discuss two solution concepts:
> Pareto optimality
> Nash equilibrium

Later we will discuss several others



Pareto Optimality

e A strategy profile s Pareto dominates a strategy profile s’ if

> No agent gets a worse payoff with s than with ¢,
l.e., U;(s) > uy(s’) forall i,

> at least one agent gets a better payoff with s than with s,
l.e., U;(s) > uy(s’) for at least one |

e A strategy profile s is Pareto optimal (or Pareto efficient) if there’s no
strategy profile s' that Pareto dominates s

> Every game has at least one Pareto optimal profile

> Always at least one Pareto optimal profile in which the strategies are
pure



Examples c D
Cl| 3,3 0,5
The Prisoner’s Dilemma D 50| L1
e (D,C) is Pareto optimal: no profile gives player 1 a higher payoff
e (C, D) is Pareto optimal: no profile gives player 2 a higher payoff
e (C,C) is Pareto optimal: no profile gives both players a higher payoff
e (D,D) isn’t Pareto optimal: (C,C) Pareto dominates it
Which Side of the Road
e (Left,Left) and (Right,Right) are Pareto optimal Leit _ Right
e In common-payoff games, all Pareto optimal Left | 1,1 0,0
strategy profiles have the same payoffs
Right | 0,0 1,1

> If (Left,Left) had payoffs (2,2), then

(Right,Right) wouldn’t be Pareto optimal




Best Response

Suppose agent i knows how the others are going to play

> Then i has an ordinary optimization problem:
maximize expected utility

We’ll use s_; to mean a strategy profile for all of the agents except i

S =(Sg -++» Sicqs Sis1s -++5 Sp)
Let s; be any strategy for agent i. Then

(SiyS=i) = (Sg» --+5 Si_{s Sis Sisgs «--»> Sp)

S; IS a best response to s_; if for every strategy s;" available to agent i,
Ui (i S5i) = Ui (S',55)

There is always at least one best response

A best response s; is unique if u; (s;, S_; ) > U; (S;/, S_; ) for every s’ #s;



Best Response

e Givens ;, there are only two possibilities:
(1) 1 has a pure strategy s; that is a unique best response to s ;
(2) 1 has infinitely many best responses to s _;
Proof. Suppose (1) is false. Then there are two possibilities:
e Casel: s;isn’tunique, i.e., > 2 Strategies are best responsesto s
> Then they all must have the same expected utility
> Otherwise, they aren’t all “best”
> Thus any mixture of them is also a best response
> Thus (2) happens.
e Case 2:s;isn’t pure, i.e., it’s a mixture of k > 2 actions
> The actions correspond to pure strategies, so this reduces to Case 1
> Thus (2) happens.
e Theorem: Always there exists a pure best response s; t0 S ;
Proof. In both (1) and (2) above, there should be one pure best response.



Example

® Suppose we modify the Prisoner’s Dilemma to give Agent 1 another
possible action:

> Suppose 2’s strategy is to play action C

C D

> What are 1’s best responses?
cC| 3,3 | 0,5
> S 2’ is to pl ion D SREEE
uppose 2°s strategy 1s to play action e[ 33 13

> What are 1’s best responses?



Nash Equilibrium

Equilibrium: it is simply a state of the world where economic forces are
balanced and in the absence of external influence the equilibrium variables will
not change.

> More intuitively, a state in which no person involved in the game wants any
change.

Famous economic equilibria: Nash equilibrium, Correlated equilibrium, Market
Clearance equilibrium

S=(Sy, ..., Sy) IS & Nash equilibrium if for every I, s; Is a best response to s_;

> Every agent’s strategy 1s a best response to the other agents’ strategies

> No agent can do better by unilaterally changing his strategy Left Right
Theorem (Nash, 1951): Every game with a finite number Left 0,0

of agents and actions has at least one Nash equilibrium Right | 0,0 |[1,1
In Which Side of the Road, c 5
(Left,Left) and (Right,Right) are Nash equilibria
In the Prisoner’s Dilemma, (D,D) Is a Nash equilibrium Cl| 33| 05

> lronically, it’s the only pure-strategy profile that
isn’t Pareto optimal D| 50 |11




Strict Nash Equilibrium

e A Nash equilibriums = (s, ...,s,) Isstrict if for every I,
s; is the only best response to s_;
* i.e., any agent who unilaterally changes strategy will do worse
e Recall that If a best response is unigue, it must be pure
> It follows that in a strict Nash equilibrium, all of the strategies are pure

e But if a Nash equilibrium is pure, it isn’t necessarily strict

e Which of the following Nash equilibria are strict? Why?

Left Right
c D S Left. Right et |(1,1) | 0,0
3,3 105 33 104 Left | [L1]) 0,0 | pighe | 0,0 | [11
50 | (1,1 4,0 |11 Right| 0,0 ||1,1 Center | 0,0 | [1,%




Weak Nash Equilibrium

If a Nash equilibrium s isn’t strict, then it is weak
> At least one agent i has more than one best response to s ;
If a Nash equilibrium includes a mixed strategy, then it is weak

> If a mixture of k => 2 actions is a best response to s ;, then any other
mixture of the actions is also a best response

If a Nash equilibrium consists only of pure

strategies, it might still be weak Left  Right
Left 1,1 0,0
Weak Nash equilibria are less stable Right | 0,0 11

than strict Nash equilibria
Center | 0,0 1, %

> If a Nash equilibrium is weak, then at
least one agent has infinitely many best
responses, and only one of them isin s




Finding Mixed-Strategy Nash Equilibria

In general, it’s tricky to compute mixed-strategy Nash equilibria
> But easier if we can identify the support of the equilibrium strategies
In 2x2 games, we can do this easily
We especially use theorem below proved earlier
Theorem A: Always there exists a pure best response s; t0 s ;

Corollary B: If (s, s,) Is a pure Nash equilibrium only among pure
strategies, it should be a Nash equilibrium among mixed strategies as well

Now let (S, S,) be a Nash equilibrium

If both s, s, have supports of size one, it should be one of the cells of the
normal-form matrix and we are done by Corollary B

Thus assume at least one of s,, s, has a support of size two.



Finding Mixed-Strategy Nash Equilibria

e Now Iif the support of one of s, S,, say S,, Is of size one, i.e., it is pure, then
s, should be pure as well, unless both actions of player 2 have the same
payoffs; in this case any mixed strategy of both actions can be Nash
equilibrium.

e Thus in the rest we assume both supports have size two.

> Thus to find s, assume agent 1 selects action a, with probability p and
action a'; with probability 1-p.

> Now since s, has a support of size two, its support must include both
of agent 2’s actions, and they must have the same expected utility

« Otherwise agent 2’s best response would be just one of them and its
support has size one.

> Hence find p such that u,(s,, a,) = u,(s;, a',), 1.e., solve the equation to
find p (and thus s,)

> Similarly, find s, such that u,(a,, s,) = u,(a';, s,)



Finding Mixed-Strategy Nash Equilibria

Example: Battle of the Sexes

e \We already saw pure Nash equilibria. Wife

e Ifthere’s a mixed-strategy equilibrium,
> both strategies must be mixtures

of {Opera, Football}

usband Oger Football
Opera 2,1 0,0
Football 0,0 1,2

> each must be a best response to the other

® Suppose the husband’s strategy is S, = {(p, Opera), (1p, Football)}

® Expected utilities of the wife’s actions:
u,,(Football, s,) = 1(1 — p)
e |If the wife mixes the two actions, they must have the same expected utility

u,(Opera, s,) = 2p;

> Otherwise the best response would be to always use the action whose

expected utility is higher

> Thus 2p=1-p, so p=1/3
® So the husband’s mixed strategy is s, = {(1/3, Opera), (2/3, Football)}




Finding Mixed-Strategy Nash Equilibria

® Similarly, we can show the wife’s usband | Oper
mixed strategy is i Football
€ gy Wife a
> s, = {(2/3, Opera), (1/3, Football)} Opera 2.1 0,0
® So the mixed-strategy Nash Football 0,0 1,2

equilibrium is (s, , S,), Where
> s, = {(2/3, Opera), (1/3, Football)}
> s, = {(1/3, Opera), (2/3, Football)}
e Questions:
> Like all mixed-strategy Nash equilibria, (s,,, S;,) IS weak
 Both players have infinitely many other best-response strategies
« What are they?
> How do we know that (s, , s;,) really is a Nash equilibrium?
» Indeed the proof is by the way that we found Nash equilibria (s,,, S;,)



Finding Mixed-Strategy Nash Equilibria

> s, = {(2/3, Opera), (1/3, Football)}

2/321/3 =2/9 [ 2/3 +2/3 = 4/

> s, = {(1/3, Opera), (2/3, Football)} \ /
Wife’s expected utility is
usband | Oper Foothall
> 2(2/9) +1(2/9) + 0(5/9) = 2/3 Wife a ootha
Husband’s expected utility is also 2/3 Opera
Football &_O] Q_Z]

It’s “fair” in the sense that both players
have the same expected payoff

1/31/3=1/9 | 1/3 *2/3=2/9

But it’s Pareto-dominated by both
of the pure-strategy equilibria

> In each of them, one agent gets 1 and the other gets 2

Can you think of a fair way of choosing actions that produces a higher
expected utility?



Finding Mixed-Strategy Nash Equilibria

Matching Pennies

e Easy to see that in this game, no pure strategy Heads __ Tails
could be part of a Nash equilibrium 4 Y,
e - : Heads | >(1, -1] | -1, 1N
> For each combination of pure strategies,

one of the agents can do better by changing Tails 11
his/her strategy
TN %

e Thus there isn’t a strict Nash equilibrium since it would be pure.

e But again there’s a mixed-strategy equilibrium
> Can be derived the same way as in the Battle of the Sexes
« Resultis (s,s), where s = {(*2, Heads), (Y2, Tails)}



Another Interpretation of Mixed Strategies

® Suppose agent i has a deterministic method for picking a strategy, but it
depends on factors that aren’t part of the game itself

> If 1 plays a game several times, i may pick different strategies

e If the other players don’t know how I picks a strategy, they’ll be uncertain
what I’s strategy will be

> Agent I’s mixed strategy is everyone else’s assessment of how likely |
IS to play each pure strategy

e Example:

> In a series of soccer penalty kicks, the kicker could kick left or right in
a deterministic pattern that the goalie thinks Is random



Complexity of Finding Nash Equilibria
e We’ve discussed how to find Nash equilibria in some special cases
> Step 1: look for pure-strategy equilibria
« Examine each cell of the matrix

« If no cell in the same row is better for agent 1, and
no cell in the same column is better for agent 2 b b’

then the cell is a Nash equilibrium a | Uy, V| Uy Vy

> Step 2: look for mixed-strategy equilibria

a | Uz, Vg | Uy Vy
» Write agent 2’s strategy as {(q, b), (1-q, b")};

look for g such that a and a' have the same expected utility

» Write agent 1’s strategy as {(p, a), (1-p, a")};
look for p such that b and b* have the same expected utility

e More generally for two-player games with any number of actions

for each player, if we know support of each, we can find a mixed-Nash
equilibrium in polynomial-time by solving linear equations (via linear program).
e What about the general case?

2X2 games



Complexity of Finding Nash Equilibria

e General case: n players, m actions per player, payoff matrix has m" cells
(not in the book)
e Brute-force approach:
> Step 1: Look for pure-strategy equilibria
* At each cell of the matrix,

» For each player, can that player do
better by choosing a different action?

« Polynomial time

> Step 2: Look for mixed-strategy equilibria
* For every possible combination of supports for s, ..., s,
» Solve sets of simultaneous equations
» Exponentially many combinations of supports
 Can it be done more quickly?



Complexity of Finding Nash Equilibria

e Two-player games

> Lemke & Howson (1964): solve a set of simultaneous equations that
Includes all possible support sets fors,, ..., s,

« Some of the equations are quadratic => worst-case exponential time
> Porter, Nudelman, & Shoham (2004)
Al methods (constraint programming)
> Sandholm, Gilpin, & Conitzer (2005)
» Mixed Integer Programming (MIP) problem
e n-player games
> van der Laan, Talma, & van der Heyden (1987)
> Govindan, Wilson (2004)
> Porter, Nudelman, & Shoham (2004)
e \Worst-case running time still is exponential in the size of the payoff matrix



Complexity of Finding Nash Equilibria
e There are special cases that can be done in polynomial time in the size of
the payoff matrix
> Finding pure-strategy Nash equilibria
 Check each square of the payoff matrix
> Finding Nash equilibria in zero-sum games (see later in thi)
e Linear programming
e For the general case,
> It’s unknown whether there are polynomial-time algorithms to do it

> It’s unknown whether there are polynomial-time algorithms to compute
approximations

> But we know both questions are PPAD-complete (but not NP-
complete) even for two-player games (with some definition of PPAD

Introduced by Christos Papadimitriou in 1994)

e This is still one of the most important open problems in computational
complexity theory



e-Nash Equilibrium
Reflects the idea that agents might not change strategies if the gain would

be very small

Let € > 0. A strategy profile s = (s, . . ., S,) is an g-Nash equilibrium if
for every agent i and for every strategy s;’ #S;,

U (Si, S_i) = U (Si',5)—¢
e-Nash equilibria exist for every € > 0

> Every Nash equilibrium is an e-Nash equilibrium, and is surrounded
by a region of e-Nash equilibria

This concept can be computationally useful

> Algorithms to identify e-Nash equilibria need consider only a finite set
of mixed-strategy profiles (not the whole continuous space)

> Because of finite precision, computers generally find only e-Nash
equilibria, where ¢ is roughly the machine precision

Finding an e-Nash equilibrium is still PPAD-complete (but not NP-
complete) even for two-player games



The Price of Anarchy (PoA)

® In the Chocolate Game, recall that

> (T3,T3) is the action profile that
provides the best outcome for everyone

> If we assume each payer acts to maximize
his/her utility without regard to the other,
we get (T1,T1)

> By choosing (T3,T3), each player could
have gotten 3 times as much

® [et’s generalize “best outcome for everyone”

T3

T1

T3

T1

T3 Tl
0, 4
40 | 1,1
T3 Tl
3,3 | 04
4,0 |[1,1




The Price of Anarchy

Social welfare function: a function w(s) that measures the players’ welfare,
given a strategy profile s, e.qg.,

> Utilitarian function: w(s) = average expected utility
> Egalitarian function: w(s) = minimum expected utility

Social optimum: benevolent dictator chooses s* that optimizes w
> S* = arg max, w(s)

Anarchy: no dictator; every player selfishly tries to optimize his/her own
expected utility, disregarding the welfare of the other players

> Get a strategy profile s (e.g., a Nash equilibrium)
> In general, w(s) < w(s*)

Price of AnarChy (POA) = MaXs js Nash equilibrium W(S*) /W(S)
PoA is the most popular measure of inefficiency of equilibria.

We are generally interested in PoA which is closer to 1, 1.e., all equilibria are
good approximations of an optimal solution.



The Price of Anarchy

e Example: the Chocolate Game

> Utilitarian welfare function: T3 Tl
w(s) = average expected utility 3 0.4

e Social optimum: s* =(T3,T3) T1| 4,0 | 1,1
> wW(s*)=3
T3 T1
o AnarChy: S = (Tl,Tl) T3| 3.3 0 4
> wW(s)=1
T1| 4,0

e Price of anarchy
= w(s*)/w(s) =3/1=3

e \What would the answer be if we used the egalitarian welfare function?



The Price of Anarchy

e® Sometimes instead of maximizing a welfare function w,

we want to minimize a cost function ¢ (e.g. in Prisoner’s Dilemma)

> Utilitarian function: c(s) = avg. expected cost C D
> Egalitarian function: c(s) = max. expected cost cl 33| os
e Need to adjust the definitions D| 50

> Social optimum:  s* = arg min, c(s)

> Anarchy: every player selfishly tries to minimize his/her own

cost, disregarding the costs of the other players
(et a strategy profile s (e.g., a Nash equilibrium)
* In general, c(s) > c(s*)
> Price of Anarchy (POA) = maXq is nash equitibrium €(S) / €(S¥)
* 1.e., the reciprocal of what we had before

* E.g. in Prisoner’s dilemma POA= 3




Rationalizability

e A strategy is rationalizable if a perfectly rational agent could justifiably
play it against perfectly rational opponents

> The formal definition complicated
e Informally:

> A strategy for agent i is rationalizable if it’s a best response to
strategies that 1 could reasonably believe the other agents have

> To be reasonable, i’s beliefs must take into account
» the other agents’ knowledge of i’s rationality,
« their knowledge of iI’s knowledge of their rationality,
« and so on so forth recursively

e A rationalizable strategy profile is a strategy profile that consists only of
rationalizable strategies



Rationalizability

e Every Nash equilibrium is composed of Left  Right
rationalizable strategies Left | 1.1 0.0

e Thus the set of rationalizable strategies
Right | 0,0 1,1

(and strategy profiles) is always nonempty

Example: Which Side of the Road
e For Agent 1, the pure strategy s, = Left is rationalizable because
> S, = Leftis 1’s best response if 2 uses S, = Lefft,
> and 1 can reasonably believe 2 would rationally use s, = Left, because
« S, = Leftis 2’s best response if 1 uses S; = Left,

- and 2 can reasonably believe 1 would rationally use s, = Lefft,
because

» S, = Leftis 1’s best response if 2 uses S, = Left,

» and 1 can reasonably believe 2 would rationally use s, = Lefft,
because

- ... and so on so forth...



Rationalizability Heads  Tails

e Some rationalizable strategies are Heads| 1,-1 | -1, 1

not part of any Nash equilibrium Tails | -1 1 | 1.1

Example: Matching Pennies
e For Agent 1, the pure strategy s, = Heads is rationalizable because
> S, = Heads is 1’s best response if 2 uses S, = Heads,
> and 1 can reasonably believe 2 would rationally use s, = Heads, because
S, = Heads is 2’s best response if 1 uses s, = Talils,

» and 2 can reasonably believe 1 would rationally use s, = Talls,
because

» S, = Tails is 1’s best response if 2 uses S, = Talls,

» and 1 can reasonably believe 2 would rationally use s, = Talils,
because

- ... and so on so forth...



Common Knowledge

e The definition of common knowledge is recursive analogous to the
definition of rationalizability

e A property p is common knowledge if
> Everyone knows p
> Everyone knows that everyone knows p
> Everyone knows that everyone knows that everyone knows p
el O



We Aren’t Rational

® More evidence that we aren’t game-theoretically rational agents

® Why choose an “irrational” strategy?

> Several possible reasons ...



Reasons for Choosing “Irrational” Strategies

(1) Limitations in reasoning ability
» Didn’t calculate the Nash equilibrium correctly
» Don’t know how to calculate it
> Don’t even know the concept
(2) Wrong payoff matrix - doesn’t encode agent’s actual preferences

> It’s a common error to take an external measure (money, points, etc.)
and assume it’s all that an agent cares about

> Other things may be more important than winning
 Being helpful
 Curiosity
 Creating mischief
* Venting frustration
(3) Beliefs about the other agents’ likely actions (next slide)



Beliefs about Other Agents’ Actions

e A Nash equilibrium strategy is best for you if the other agents also use their
Nash equilibrium strategies

® In many cases, the other agents won’t use Nash equilibrium strategies
» If you can guess what actions they’ll choose, then
* You can compute your best response to those actions
» maximize your expected payoff, given their actions
« Good guess => you may do much better than the Nash equilibrium
» Bad guess => you may do much worse



Worst-Case Expected Utility

e For agent i, the worst-case expected utility of a

strategy s; is the minimum over all possible usband

combinations of strategies for the other agents: Wife Opera | Football

min, u, (Si’ S-i) Opera 2,1 | 0,0

Football 0,0 1,2

e Example: Battle of the Sexes
> Wife’s strategy S, = {(p, Opera), (1 — p, Football)}
> Husband’s strategy s, = {(q, Opera), (1 — g, Football)}

> Uy(p,@)=2pg+ (1-p)(1-0)=3pg-p-q+1

_ We can write u,(p,q)

> For any fixed p, u,(p,q) Is linear in g instead of u,(s,,, Si)

* e.g., ifp=1%,thenu,(%,q)=%q+%
> 0<q<1,sotheminmustbeatq=0o0rq=1
° e.g.,min,(*2q+%)isatq=0
> ming u,(p,g) = min (u,(p,0), u,(p,1)) = min (1 —p, 2p)



Maxmin Strategies

Also called maximin

e A maxmin strategy for agent i

> A strategy s, that makes I’s worst-case expected utility as high as
possible: :
argmaxmin u,(s,,s_,)

: S_;

Si

> This 1sn’t necessarily unique

» Often it is mixed

e Agenti’s maxmin value, or security level, is the maxmin strategy’s
worst-case expected utility:
maxmin u(s;,s_ ;)

Sl

max min u,(s,,s,)

Sy Sy

e For 2 players it simplifies to



Example

Wife’s and husband’s strategies
> S, = {(p, Opera), (1 — p, Football)}
> S, = {(q, Opera), (1 — g, Football)}

Recall that wife’s worst-case expected utility is

min, u,(p,q) = min (1-p, 2p)
> Find p that maximizes it
Maxisatl-p=2p,i.e.,p=1/3
> Wife’s maxmin value is 1—p = 2/3

> Wife’s maxmin strategy Is
{(1/3, Opera), (2/3, Football)}

Similarly,
» Husband’s maxmin value is 2/3

> Husband’s maxmin strategy is
{(2/3, Opera), (1/3, Football)}

minq Uy,,(P,q)

0.6

0.5

0.4

0.3

0.2

olf /
i

Wife

usband

Opera

Football

Opera

2,1

0,0

Football

0,0

1,2

0.2

0.4

.G

0.8 1.0



Minmax Strategies (in 2-Player Games)

e Minmax strategy and minmax value
> Duals of their maxmin counterparts

® Suppose agent 1 wants to punish agent 2, regardless of how it
affects agent 1°s own payoff

® Agent 1’s minmax strategy against agent 2

> A strategy s, that minimizes the expected utility of 2°s best
Also called response to s, :
minimax argminmax u, (s, s,)
51 S2
® Agent 2’s minmax value is 2’s maximum expected utility if
agent 1 plays his/her minmax strategy:

mSlin max u, (5,5,)

e Minmax strategy profile: both players use their minmax
strategies



Example

Wife’s and husband’s strategies
> S, = {(p, Opera), (1 — p, Football)}
> s, = {(q, Opera), (1 — g, Football)}

u,(p,0) =pq+2(1-p)(1-0g)=3pg—-2p—-29 +2

Given wife’s strategy p, husband’s expected utility is linear in ¢

> e.g., ifp=%,thenu,(*2q)=-2q+1
Max isatg=0orq=1
max, un(p,a) = (2-2p, p)
Find p that minimizes this
Minisat-2p+2=p > p=2/3

AAAAAAAAAAA o | A A A A A

usband
Wife Opera | Football
Opera 2,1 0,0
Football 0,0 1,2
3 7
2-2p.

Husband/s minmax value is 2/3 e 1

Wife’s minmax strategy Is
{(2/3, Opera), (1/3, Football)}




Minmax Strategies in n-Agent Games

In n-agent games (n > 2), agent i1 usually can’t minimize agent |’s payoff by
acting unilaterally

But suppose all the agents “gang up” on agent |

> Lets™_; be a mixed-strategy profile that minimizes j’s maximum payoff,

b * . B 0
s., = argmingax u, (Sf’s'f)a

> Forevery agent 1 # j, a minmax strategy for I Is I’s component of s ;*

Agent J’s minmax value Is J’s maximum payoff against s ;*

max u, (Sj,s_j) =minmax u, (s,.s.;)

We have equality since we just replaced s ;* by its value above



Minimax Theorem (von Neumann, 1928)

e Theorem. Let G be any finite two-player zero-sum game. For each player I,

> I’s expected utility in any Nash equilibrium
= I’s maxmin value
= I’s minmax value

> In other words, for every Nash equilibrium (s,*, s,*),
u,(s;,s,) =minmaxu,(s,,s,) = maxminu,(s,,s,) = —U,(s,,s,)
S1 S2 S1 S2

- Note that since -u,_ u, the third term does not mention u,

e Corollary. For two-player zer-sum games:{Nash equilibria} = {maxmin
strategy profiles}= {minmax strategy profiles}

e Note that this Is not necessary true for non-zero-sum games as we saw for
Battle of Sexes in previous slides

e Terminology: the value (or minmax value) of G is agent 1’s minmax value



Proof of Minimax Theorem

e Let-u,=u, = uand let mixed strategies s; = x = (X4, ...,Xg) and s, =y =
(Y1) s Y1)
o Thenu(x,y) = X; X XiyjUi j=X; Vj 2i Xillij
e We want to find x* which optimizes v! = maxxmyin u(x,y)
® Since player 2 is doing his best response (in min u(X,y) ) he sets y; > 0 only
iIf X.; x;u; ; is minimized. :
Thus v'= 3, ¥, x;yju; ;= (X;y;) min, ¥, xpu; ; = m]_in DXy 5 D Xy
for any |
Thus we have the following LP1 to find x*
max vt
such that v' < ¥, x;u; ; forall j

i
XiZ 0



Proof of Minimax Theorem (continued)

Similarly for v? = minymfxu(x,y) we have LP2
min v?
such that v* > ¥ yu; ; forall i
2y =1
yi= 0
But LP1 And LP2 are duals of each other and by the (strong) duality

theorem vl = v2

Also note that if (x,y) is a Nash equilibrium, x should satisfy LP1 (since we
used only the fact that y is a best response to x in the proof) and y should
satisfy LP2 (since we used only the fact that x is a best response to y in the

proof) and thus u, (x, y) = v! = v?



Dominant Strategies

® Lets;and s, be two strategies for agent i

> Intuitively, s; dominates s;’ if agent i does better with s; than with s;/
for every strategy profile s_; of the remaining agents

e Mathematically, there are three gradations of dominance:
> s; strictly dominates s;’ if for every s_;,
U; (i, S—) > U; (57, S)
> s; weakly dominates s;' if for every s ;,
U; (Si, S—) = U; (S, S)
and for at least one s_;,
U; (Siy S—i) > U; (Si', )
» s; very weakly dominates s;’ if for every s _;,
U; (Siy S=i ) = U; (S, S_)



Dominant Strategy Equilibria

e A strategy is strictly (resp., weakly, very weakly) dominant for an agent

If it strictly (weakly, very weakly) dominates any other strategy for that
agent

® A strategy profile (s, . . ., s,) in which every s; is dominant for agent i
(strictly, weakly, or very weakly) is a Nash equilibrium
« Why?

> Such a strategy profile forms an equilibrium in strictly (weakly, very
weakly) dominant strategies



Examples

Example: the Prisoner’s Dilemma
» http://www.youtube.com/watch?v=ED9gaAb2BEw

For agent 1, D is strictly dominant ol @
> If agent 2 uses C, then ﬂ

» Agent 1’s payoff is higher with D than with C D H 0

> If agent 2 uses D, then
« Agent 1’s payoff is higher with D than with C

Similarly, D is strictly dominant for agent 2 C

So (D,D) is a Nash equilibrium in strictly dominant strategies
D

C D
3,3 0,5

How do strictly dominant strategies relate to strict Nash equilibria?



http://www.youtube.com/watch?v=ED9gaAb2BEw

Example: Matching Pennies

e Matching Pennies
> If agent 2 uses Heads, then
» For agent 1, Heads is better than Tails
> If agent 2 uses Talils, then
« For agent 1, Tails is better than Heads

> Agent |1 doesn’t have a dominant strategy

=>no Nash equilibrium in dominant strategies

e Which Side of the Road
> Same kind of argument as above
> No Nash equilibrium in dominant strategies

Heads

Tails

Left

Right

Heads

Tails

m—l

@1

PE

nr

Left

Right

@o

o

BF




Elimination of Strictly Dominated Strategies

® A strategy s; is strictly (weakly, very weakly) dominated for an agent i

If some other strategy s’ strictly (weakly, very weakly) dominates s;

L R
® A strictly dominated strategy can’t be a best N
response to any move, so we can eliminate it e U
(remove it from the payoff matrix) ol 51|10
> This gives a reduced game
> Other strategies may now be strictly dominated, ] R
even if they weren’t dominated before \
D| 51 1,10
e |ESDS (lterated Elimination of Strictly Dominated Strategies):
» Do elimination repeatedly until no more eliminations are possible |
> When no more eliminations are possible, we have Dl 51
the maximal reduction of the original game ’




IESDS

If you eliminate a strictly dominated strategy, the reduced
game has the same Nash equilibria as the original one

Thus
{Nash equilibria of the original game}
= {Nash equilibria of the maximally reduced game}

Use this technique to simplify finding Nash equilibria
> Look for Nash equilibria on the maximally reduced game

In the example, we ended up with a single cell

> The single cell must be a unique Nash equilibrium
in all three of the games

L R

Y3305

D| 51 |10
L R

D| 51 | 10
L

D| 51




IESDS

® Even if s; isn’t strictly dominated by a pure
strategy, it may be strictly dominated by a
mixed strategy

e Example: the three games shown at right

> 15t game:
» R is strictly dominated by L (and by C)
- Eliminate it, get 2" game

> 2" game:
 Neither U nor D dominates M
« But {(¥2, U), (*2, D)} strictly dominates M

» This wasn’t true before we removed R

- Eliminate it, get 3" game

> 3" game is maximally reduced

L C R
3,110,100
1,1 {1,150
0,114,100

L C

U 3101

M |11]| 11

0,1]41
L C
U |31|01
D | 01|41




Correlated Equilibrium: Pithy Quote

If there Is Intelligent life on other planets, in a majority of
them, they would have discovered correlated equilibrium
before Nash equilibrium.

----Roger Myerson



Correlated Equilibrium: Intuition

e Not every correlated equilibrium is a Nash equilibrium but
every Nash equilibrium is a correlated equilibrium

e \We have a traffic light: a fair randomizing device that tells one
of the agents to go and the other to wait.

o Benefits:

> easler to compute than Nash, e.g., it is polynomial-time
computable

> fairness is achieved

> the sum of social welfare exceeds that of any Nash
equilibrium



Correlated Equilibrium

Recall the mixed-strategy equilibrium i usband | Oper | - .
for the Battle of the Sexes I a
> s, = {(2/3, Opera), (1/3, Football)} Opera 211 00
Football 0,0 1,2

> s, = {(1/3, Opera), (2/3, Football)}
This is “fair”: each agent is equally likely to get his/her preferred activity
But 5/9 of the time, they’ll choose different activities => utility O for both

> Thus each agent’s expected utility 1s only 2/3

> We’ve required them to make their choices independently

Coordinate their choices (e.g., flip a coin) => eliminate cases where they
choose different activities

> Each agent’s payoff will always be 1 or 2; expected utility 1.5
Solution concept: correlated equilibrium
> Generalization of a Nash equilibrium



Correlated Equilibrium Definition

Let G be an 2-agent game (for now).

Recall that in a (mixed) Nash Equilibrium at the end we compute a
probability matrix (also known as joint probability distribution) P = [p; ;]
where Z; ;p; ; = 1 and in addition p; ; = g;.q; where Z;q; = 1 and
2;q; = 1 (here q and q" are the mixed strategies of the first agent and the
second agent).

Now if we remove the constraint p; ; = g;.q; (and thus X;q; = 1 and
qu} = 1) but still keep all other properties of Nash Equilibrium then we
have a Correlated Equilibrium.

Surely it is clear that by this definition of Correlated Equilibrium, every
Nash Equilibrium is a Correlated Equilibrium as well but note vice versa.

Even for a more general n-player game, we can compute a Correlated
Equilibrium in polynomial time by a linear program (as we see in the next
slide).

Indeed the constraint p; ; = g;. q; is the one that makes computing Nash
Equilibrium harder.



Computing CE

Z pla)u,;(a) = Z pla)u;(ai,a_;) Vi€ N, \:?u,.u: € A,

HE.”H.EH *-’IE~"1|I'1:E”

pla) =0 VYa € A

Z pla) =1

ac A

» variables: p(a); constants: u;(a)

» we could find the social-welfare maximizing CE by adding an
objective function

maximize: Z pla) Z ui(a).

a€A 1EN



Motivation of Correlated Equilibrium

Let G be an n-agent game

Let “Nature”(e.g., a traffic light) choose action profilea = (a,, ..., a,)
randomly according to our computed joint probability distribution
(Correlated Equilibirum) p.

Then “Nature” tells each agent i the value of a; (privately)
> An agent can condition his/her action based on (private) value a

However by the definition of best response in Nash Equilibrium (which
also exists in Correlated Equilibrium), agent i will not deviate from
suggested action a;

> Note that here we implicitly assume because other agents are rational as
well, they choose the suggested actions by the “Nature” which are
given to them privately.

Since there is no randomization in the actions, the correlated equilibrium
might seem more natural.



Auctions

An auction is a way (other than bargaining) to sell a fixed supply of a
commodity (an item to be sold) for which there is no well-established
ongoing market

Bidders make bids

> proposals to pay various amounts of money for the commodity
Often the commaodity is sold to the bidder who makes the largest bid
Example applications

> Real estate, art, oil leases, electromagnetic spectrum, electricity, eBay,
google ads

Private-value auctions

 Each bidder may have a different bidder value or bidder valuation (BV),
I.e., how much the commaodity is worth to that bidder

» A bidder’s BV is his/her private information, not known to others

- E.g., flowers, art, antigues



Types of Auctions

e Classification according to the rules for bidding
« English
 Dutch
* First price sealed bid
« Vickrey
* many others

> On the following pages, I’ll describe several of these and will analyze their
equilibria

e A possible problem is collusion (secret agreements for fraudulent purposes)
» Groups of bidders who won’t bid against each other, to keep the price low

> Bidders who place phony (phantom) bids to raise the price (hence the
auctioneer’s profit)

® Ifthere’s collusion, the equilibrium analysis is no longer valid



English Auction

The name comes from oral auctions in English-speaking countries, but I think this
kind of auction was also used in ancient Rome

Commodities:

> antiques, artworks, cattle, horses, wholesale fruits and vegetables, old books, etc.
Typical rules:

> Auctioneer solicits an opening bid from the group

> Anyone who wants to bid should call out a new price at least ¢ higher than the
previous high bid (e.g., ¢ = 1 dollar)

> The bidding continues until all bidders but one have dropped out

> The highest bidder gets the object being sold, for a price equal to his/her final bid
For each bidder i, let

> V; = 1’s valuation of the commodity (private information)

» B;=1’s final bid

If i wins, then I’s profit is w; = v; — B; and everyone else’s profit = 0



English Auction (continued)

e Nash equilibrium:

> Each bidder i participates until the bidding reaches v; ,
then drops out

> The highest bidder, i, gets the object, at price B, <v;,soz; =B;—Vv; >0
* B, is close to the second highest bidder’s valuation
» For every bidder j # 1, ;= 0
e Why is this an equilibrium?
® Suppose bidder j deviates and none of the other bidders deviate
> |If ) deviates by dropping out earlier,
« Then j’s profit will be 0, no better than before
> If u deviates by bidding B; > v;, then
* J win’s the auction but J’s profit is v; — B; < 0, worse than before



English Auction (continued)

e If there is a large range of bidder valuations, then the difference between
the highest and 2"-highest valuations may be large

> Thus if there’s wide disagreement about the item’s value, the winner
might be able to get it for much less than his/her valuation

® Letn be the number of bidders

> The higher n is, the more likely it is that the highest and 2"d-highest
valuations are close

« Thus, the more likely it is that the winner pays close to his/her
valuation



First-Price Sealed-Bid Auctions

e Examples:
> construction contracts (lowest bidder)
> real estate
> art treasures

e Typical rules

> Bidders write their bids for the object and their names on slips of
paper and deliver them to the auctioneer

> The auctioneer opens the bid and finds the highest bidder

> The highest bidder gets the object being sold, for a price equal to
his/her own bid

> Winner’s profit = BV— price paid

» Everyone else’s profit =0



First-Price Sealed-Bid (continued)

® Suppose that
> There are n bidders
> Each bidder has a private valuation, v;, which is private information
> But a probability distribution for v; is common knowledge
 Let’s say v; is uniformly distributed over [0, 100]
> Let B; denote the bid of player i
> Let m; denote the profit of player i

e \What is the Nash equilibrium bidding strategy for the players?
> Need to find the optimal bidding strategies

® First we’ll look at the case where n = 2



First-Price Sealed-Bid (continued)

e Finding the optimal bidding strategies
> Let B; be agent i’s bid, and =; be agent i’s profit
> IfB;>v,, thenm; <0
» S0, assuming rationality, B; <v;
> Thus
- ;=0  if B;# max; {B;}
« m;=V;—B; If B;=max;{B;}
» How much below v; should your bid be?
> The smaller B; Is,
* the less likely that i will win the object
« the more profit i will make if i wins the object



First-Price Sealed-Bid (continued)

Casen=2
> Suppose your BV is v and your bid is B

> Let x be the other bidder’s BV
and ox be his/her bid, where0<a <1

* You don’t know the values of x and o,
> Your expected profit is
 E(m) = P(your bid is higher)-(v—B) + P(your bid is lower)-0
If x is uniformly distributed over [0, 100], then the pdf is f(x) = 1/100, 0 <x <100
> P(your bid is higher) = P(ax < B) = P(x < B/a) = J,2* (1/100) dx = B/100a
> so0 E(n) = B(v — B)/100a

If you want to maximize your expected profit (hence your valuation of money is
risk-neutral), then your maximum bid is

* maxg B(v—B)/100a = maxg B(v—B) = maxg Bv — B?
« maximum occurs whenv—-2B=0 => B =v/2
So, bid Y2 of what the item is worth to you!



First-Price Sealed-Bid (continued)

e With n bidders, if your bid is B, then
> P(your bid is the highest) = (B/1000)"*

e® Assuming risk neutrality, you choose your bid to be
« maxg B"!(v—B) = v(n—1)/n
® Asnincreases,B — v
> l.e., increased competition drives bids close to the valuations



Dutch Auctions

e Examples

> flowers in the Netherlands, fish market in England and Israel, tobacco market
in Canada

e Typical rules
> Auctioneer starts with a high price
» Auctioneer lowers the price gradually, until some buyer shouts “Mine!”

> The first buyer to shout “Mine!” gets the object at the price the auctioneer just
called

> Winner’s profit = BV — price
» Everyone else’s profit =0
e Dutch auctions are game-theoretically equivalent to first-price, sealed-bid auctions
> The object goes to the highest bidder at the highest price
> A bidder must choose a bid without knowing the bids of any other bidders
> The optimal bidding strategies are the same



Sealed-Bid, Second-Price Auctions

Background: Vickrey (1961)
Used for
> stamp collectors’ auctions
» US Treasury’s long-term bonds
> Airwaves auction in New Zealand
> eBay and Amazon
Typical rules

> Bidders write their bids for the object and their names on slips of paper and
deliver them to the auctioneer

> The auctioneer opens the bid and finds the highest bidder

> The highest bidder gets the object being sold, for a price equal to the second
highest bid

Winner’s profit = BV — price

Everyone else’s profit = 0



Sealed-Bid, Second-Price (continued)

Equilibrium bidding strategy:

> It is a weakly dominant strategy to bid your true value: This property is also
called truthfulness or strategyproofness of an auction.

To show this, need to show that overbidding or underbidding cannot increase your
profit and might decrease it.

Let V be your valuation of the object, and X be the highest bid made by anyone else
Let s, be the strategy of bidding V, and &, be your profit when using s,
Let sg be a strategy that bids some B # V, and g be your profit when using sg
There are 3! = 6 possible numeric orderings of B, V, and X:

» Case 1l, X>B>V: Youdon’t get the commodity either way, so ng = m, = 0.
Case2,B>X>V: ig=V—-X<0,butm,=0
Case 3, B>V > X: you pay X rather than your bid, song=n, =V —-X>0
Case 4, X < B < V:you pay X rather than your bid, song=mn, =V - X>0
Case 5, B<X<V: ng=0,butn,=V—-X>0

VO INE s VS Yow Y

Case 6, B <V < X: You don’t get the commodity either way, so ng=m, =0



Sealed-Bid, Second-Price (continued)

e Sealed-bid, 2nd-price auctions are nearly equivalent to English auctions
> The object goes to the highest bidder
> Price is close to the second highest BV (close since the second highest
bids just a bit below his actual BV)



Coalitional Games with Transferable Utility

e Given a set of agents, a coalitional game defines how well each group (or
coalition) of agents can do for itself—its payoff

> Not concerned with
 how the agents make individual choices within a coalition,
 how they coordinate, or
« any other such detail

e Transferable utility assumption: the payoffs to a coalition may be freely
redistributed among its members

> Satisfied whenever there is a universal currency that is used for
exchange in the system

> Implies that each coalition can be assigned a single value as its payoff



Coalitional Games with Transferable Utility

e A coalitional game with transferable utility is a pair G = (N,v), where
> N={1,2, ..., n}is afinite set of players

> (nu) v: 2N — R associates with each coalition S € N a real-valued
payoff v(S), that the coalition members can distribute among
themselves

e V is the characteristic function
> We assume v(&J) = 0 and that v is non-negative.
e A coalition’s payoff is also called its worth
e Coalitional game theory is normally used to answer two questions:
(1) Which coalition will form?
(2) How should that coalition divide its payoff among its members?
® The answer to (1) 1s often “the grand coalition” (all of the agents)

> But this answer can depend on making the right choice about (2)



Example: A Voting Game

e Consider a parliament that contains 100 representatives from four political
parties:

> A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.)

e They’re going to vote on whether to pass a $100 million spending bill|
(and how much of it should be controlled by each party)

® Need a majority (= 51 votes) to pass legislation
> If the bill doesn’t pass, then every party gets 0
e More generally, a voting game would include
> asetofagents N
> a set of winning coalitions W < 2N
* In the example, all coalitions that have enough votes to pass the bill
> V(S) =1 for each coalition S € W
« Or equivalently, we could use v(S) = $100 million
> V(S) =0 for each coalition S ¢ W



Superadditive Games

A coalitional game G = (N,v) is superadditive if the union of two disjoint
coalitions Is worth at least the sum of its members’ worths

> forall S, TN, IfSNT=,thenv(SUT)>v(S)+Vv(T)
The voting-game example is superadditive

> fSAT=4,v(S)=0,and v(T) =0, thenv(SU T)>0

>» fISNT=Candv(S)=1,thenv(T)=0andv(SUT)=1

> Hencev(SUT)>v(S) +v(T)

If G is superadditive, the grand coalition always has the highest possible
payoff

> Forany S#N, v(N)>v(S) + v(N-S) > v(S)
G = (N,v) is additive (or inessential) if
e ForS TcNandSNT=3,thenv(SUT)=v(S)+Vv(T)



Constant-Sum Games

e G is constant-sum if the worth of the grand coalition equals the sum of the
worths of any two coalitions that partition N

* V(S) +V(N—-S)=Vv(N), foreverySc N

e Every additive game is constant-sum

> additive => v(S)+V(N-S)=Vv(SU(N-S)) =Vv(N)
e But not every constant-sum game is additive

> Example is a good exercise



Convex Games

e® G is convex (supermodular) if for all S,T < N,
e VSUT)+V(SNT)=>Vv(S) +v(T)

e It can be shown the above definition is equivalent to for all i in N and for
all S T < N-{i},

> V(T U {i})-w(T)>v(S U {i}) - v(S)
> Prove it as an exercise
e Recall the definition of a superadditive game:
> forall ST N, iIfSNT=9,thenv(SUT)>v(S)+Vv(T)
e It follows immediately that every super-additive game is a convex game



Simple Coalitional Games

e A game G = (N, v) is simple for every coalition S,
» either v(S) =1 (i.e.,, Swins) or v(S) =0 (i.e., S loses)
> Used to model voting situations (e.g., the example earlier)
e Often add a requirement that if S wins, all supersets of S would also win:
 ifv(S)=1,thenforallT2S,v(T)=1

e This doesn’t quite imply superadditivity
> Consider a voting game G in which 50% of the votes is sufficient to
pass a bill

> Two coalitions S and T, each iIs exactly 50% N
> Vv(S)=1 and v(T) =1
> Butv(SuUT)#2



Proper-Simple Games

e G isa proper simple game if it is both simple and constant-sum
> If S is a winning coalition, then N — S is a losing coalition
e V(S)+Vv(N-S)=1,s0ifv(S)=1thenv(N-S)=0

e Relations among the classes of games:

{Additive games} — {Super-additive games} — {Convex games}
{Additive games} < {Constant-sum game}

{Proper-simple games} < {Constant-sum games}

{Proper-simple games} < {Simple game}



Analyzing Coalitional Games

e Main question in coalitional game theory
> How to divide the payoff to the grand coalition?
e Why focus on the grand coalition?
> Many widely studied games are super-additive
« Expect the grand coalition to form because it has the highest payoff
> Agents may be required to join
« E.g., public projects often legally bound to include all participants
e Given a coalitional game G = (N, v), where N = {1, ..., n}
> We’ll want to look at the agents’ shares in the grand coalition’s payoff

« The book writes this as (Psi) w(N,v) = X = (X, ..., X,), where y;(N,V)
= X; 1s the agent’s payoff

> We won’t use the y notation much

 Can be useful for talking about several different coalitional games at
once, but we usually won’t be doing that



Terminology

e Feasible payoff set

= {all payoff profiles that don’t distribute more than the worth of the
grand coalition}

={(Xg, .., X)) | X+ X+ ...+ X} <V(N)
e Pre-imputation set

> = {feasible payoff profiles that are efficient, i.e., distribute the entire
worth of the grand coalition}

={(Xg, .. s X)) | Xy + X+ ...+ X} = V(N) imepute: verb [ trans. ]
. represent as being done,
e Imputation set
caused, or possessed by
¢ = {payoffs in ® in which each agent gets someone; attribute : the
at least what he/she would get by going crimes imputed to Richard.

alone (i.e., forming a singleton coalition)}
={(X, ..., X)) € ®: Vie N, x;>v({i})}



Fairness, Symmetry

e \What is a fair division of the payoffs?
> Three axioms describing fairness
« Symmetry, dummy player, and additivity axioms

e Definition: agents 1 and j are interchangeable if they always contribute the
same amount to every coalition of the other agents

> l.e., for every S that contains neither i nor j, v(S U{i}) = v (S U{j})

e Symmetry axiom: in a fair division of the payoffs, interchangeable agents
should receive the same payments, i.e.,

> If 1 and j are interchangeable and (x,, ..., X)) IS the payoff profile, then
X; = X;



Dummy Players

e Agentiisadummy player if I’s contributes to any coalition is exactly
the amount i can achieve alone

> i.e,forall Sst.igS, v(SuU{i}) =v(S) +v({{i})

e Dummy player axiom: in a fair distribution of payoffs, dummy players
should receive payment equal to the amount they achieve on their own

> lLe., if 1 1sa dummy player and (X4, ..., X;,) IS the payoff profile, then

X; = V({1})



Additivity

e LetG;=(N,v;) and G,=(N,Vv,) be two coalitional games with the same
agents

e Consider the combined game G = (N, v, + V,), where
> (Vg +Vp)(S) = Vi(S) + Vy(S)

e Additivity axiom: in a fair distribution of payoffs for G, the agents should
get the sum of what they would get in the two separate games

> l.e., for each player i, y;i(N, v; +V,) = yi(N, vq) + wi(N, v,)



Shapley Values

Recall that a pre-imputation is a payoff division that is both feasible and
efficient

Theorem. Given a coalitional game (N,v), there’s a unique pre-imputation
¢»(N,v) that satisfies the Symmetry, Dummy player, and Additivity axioms.
For each player I, I’s share of ¢(N,v) is

1
P (N) = DIl N[=[S|- Dt (S U {i}) - v(S))
*SCN-{i}

@(N,v) is called I’s Shapley value
> Lloyd Shapley introduced it in 1953

It captures agent i’s average marginal contribution

> The average contribution that i makes to the coalition, averaged over
every possible sequence in which the grand coalition can be built up
from the empty coalition



Shapley Values

Suppose agents join the grand coalition one by one, all sequences equally likely
Let S = {agents that joined before i} and T = {agents that joined after i}
> 1I’s marginal contribution is v(SU{i}) — v(S)
* independent of how S is ordered, independent of how T is ordered
> Pr[S, then i, then T]
= (# of sequences that include S then i1 then T) / (total # of sequences)
= [S|![T]' / |N|!
Let ¢, s = Pr[S, then i, then T] x I’s marginal contribution when it joins
_ 5]

Then /5 =" EERG(SE 4)- w(s)

Let ¢ (N,v) = expected contribution over all possible sequences

Thenjl.( ) Z/ZS Z

ScN-{i} ‘N‘ ScN-{i}

})- v(S))




Example

The voting game again
> Parties A, B, C, and D have 45, 25, 15, and 15 representatives
> A simple majority (51 votes) is required to pass the $100M bill
How much money is it fair for each party to demand?
> Calculate the Shapley values of the game
Every coalition with > 51 members has value 1; other coalitions have value 0

Recall what it means for two agents i1 and j to be interchangeable:
> for every S that contains neither i nor j, v (S U{i}) =v (S uU{j})
B and C are interchangeable
> EachaddsOto <, 1to {A}, 0to{D}, and 0 to {A,D}
Similarly, B and D are interchangeable, and so are C and D
So the fairness axiom says that B, C, and D should each get the same amount



e Recall that

i :\S\.
¥4 \N\!
Ji(NV)= 2 J s = }N‘ | (WS UL)- v(S)),
ScN-{i} ScN- {1 '

e In the example, it will be useful to let ¢'; s be the term inside the summation
> Hence (Dls |N| Pis

e Let’s compute g,(N, v)
e N=|{AB,C.D} =4,s0 j ¢ =|S|I(3-
e S may be any of the following:

> J,{B}, {C}, {D}, {B.C}, {B,D}, {C,D}

® \We need to sum over all of them:

J 4(N.v) :E(/ et/ et St Syt $ser T Sesmy t Seemy H $esenmy)

)! (V(SE 4)- ¥(S))




A has 45 members
? B has 25 members
S‘)! (V(SE A)- v(S))  Chas 15 members

D has 15 members

/ $s=|SI@3-

S=9 v{A}) - v(8)=0-0=0 2 ¢ay=0!310=0
S={B} v{A,B}) -v({B})=1-0=1 2 Qapy=11211=2
S ={C} same
S={D} same

Same
Same

9
9
9
9
S={B,C} > Vv{ABCH-v{BCH=1-0=1 > Pape=21111=2
9
9
> V{AB.CD})-V{B,CD}=1-1=0 > @'rzcp3=3'010=0

J 4 (N , V) = E(/ ,?,/E t/ 9:,{3} t/ 9:,{(3} t/ ,g:,{D} t/ QE{B,C} t)/ 9:,{3,1)} t/ ,g:,{C,D} t/ SE{B,C,D})

:i(0+2+2+2+2+2+2+0):12/24:1/2



|
PN.Y) =1 DSl (N]=[S]= D! (S U i) = v($))

" SCN-{i}

e Similarly, g = ¢ = ¢p = 1/6
> The text calculates it using Shapley’s formula
® Here’s another way to get it:
> If A gets %2, then the other %2 will be divided among B, C, and D

> They are interchangeable, so a fair division will give them equal
amounts: 1/6 each

e So distribute the money as follows:
> A gets (1/2) $100M = $50M
> B, C, D each get (1/6) $100M = $1624M



Stability of the Grand Coalition

Agents have incentive to form the grand coalition iff there aren’t any
smaller coalitions in which they could get higher payoffs

Sometimes a subset of the agents may prefer a smaller coalition
Recall the Shapley values for our voting example:
- A gets $50M; B, C, D each get $167%5M
> A on its own can’t do better
> But {A, B} have incentive to defect and divide the $100M
* e.9., $75M for A and $25M for B

What payment divisions would make the agents want to join the grand
coalition?



The Core

® The core of a coalitional game includes every payoff vector x that gives
every sub-coalition S at least as much in the grand coalition as S could get
by itself

> All feasible payoff vectors x = (X, ..., X,) such that for every S c N,

éxl.?’ v(S)

ils

e For every payoff vector x in the core, no S has any incentive to deviate
from the grand coalition

> I1.e., form their own coalition, excluding the others

e It follows immediately that if x is in the core then X is efficient
> Why?



Analogy to Nash Equilibria

The core is an analog of the set of all Nash equilibria in a noncooperative
game

> There, no agent can do better by deviating from the equilibrium
But the core is stricter

> No set of agents can do better by deviating from the grand coalition
Analogous to the set of strong Nash equilibria

> Equilibria in which no coalition of agents can do better by deviating

Unlike the set of Nash equilibria, the core may sometimes be empty

> In some cases, no matter what the payoff vector is, some agent or group
of agents has incentive to deviate



Example of an Empty Core

e Consider the voting example again:
> Shapley values are $50M to A, and $16.33M each to B, C, D
e The minimal coalitions that achieve 51 votes are
» {A,B}, {AC}, {AD}, {B,C,D}

e If the sum of the payoffs to B, C, and D is < $100M, this set of agents has
Incentive to deviate from the grand coalition

> Thus if x is in the core, x must allocate $100M to {B, C, D}

> Butif B, C, and D get the entire $100M, then A (getting $0) has
Incentive to join with whichever of B, C, and D got the least

* e.g., form a coalition {A,B} without the others

> So if x allocates the entire $100M to {B,C,D} then x cannot be in the
core

e So the core is empty



Simple Games

There are several situations in which the core is either guaranteed to exist, or
guaranteed not to exist

> The first one involves simple games
Recall: G is simple for every coalition S, either v(S) =1 orv(S) =0
Player i is a veto player if v(S) =0 forany S < N — {i}

Theorem. In a simple game, the core is empty iff there is no veto player

Example: previous slide



Simple Games

e Theorem. In a simple game in which there are veto players, the core Is
{all payoff vectors in which non-veto players get 0}

e Example: consider a modified version of the voting game
» An 80% majority is required to pass the bill
e Recall that A, B, C, and D have 45, 25, 15, and 15 representatives
> The minimal winning coalitions are {A, B, C} and {A, B, D}
> All winning coalitions must include both A and B
> So A and B are veto players
 The core includes all distributions of the $100M among A and B
 Neither A nor B can do better by deviating



Non-Additive Constant-Sum Games

® Recall:

> G is constant-sum if for all S, v(S) + V(N —S) = v(N)

> Gisadditive if v(SU T ) =v(S) + v(T ) whenever S and T are disjoint
e Theorem. Every non-additive constant-sum game has an empty core
e Example: consider a constant-sum game G with 3 players a, b, ¢

> Suppose v(a) =1, v(b) =1, v(c) =1, v({a,b,c})=4

> Thenv(a) + v({b,c}) =v({a,b})+v(c) =v({a,c}) +v(b)=4

> Thusv({b,c})=4—-1=3#v(b)+ v(c)

> So G Is not additive
e Consider x =(1.333, 1.333, 1.333)

> V({a,b}) =3, so if {a,b} deviate, they can allocate (1.5,1.5)
e To keep {a,b} from deviating, suppose we use x = (1.5, 1.5, 1)

> v({a,c}) =3, so if {a,c} deviate, they can allocate (1.667, 1.333)



Convex Games

® Recall:

> Gisconvexifforall ST N, v(SUT)>v(S)+v(T)-v(SNT)
@ Theorem. Every convex game has a nonempty core
e Theorem. In every convex game, the Shapley value is in the core



Modified Parliament Example

e 100 representatives from four political parties:
> A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.)
e Any coalition of parties can approve a spending bill worth $1K times the
number of representatives in the coalition:
v(S)=a $1000" size(i)
il s
V(A) = $45K, v(B) = $25K, v(C) = $15K, v(D) = $15K,
v({A,B}) =$70K, v({A,C}) =3$60K, v({A,D}) = $60K,
v({B,C}) = $40K, v({B,D}) = $40K, v({C,D}) = $30K, ...
v({A,B,C,D}) = $100K

e Is the game convex?



Modified Parliament Example

Let S be the grand coalition

» What is each party’s Shapley value in S?

Each party’s Shapley value is the average value it adds to S, averaged over

all 24 of the possible sequences in which S might be formed:

A, B, C, D;

A, B, D, C; A, C, B, D;

A, C, D, B; etc

In every sequence, every party adds exactly $1K times its size

Thus every party’s Shapley value is $1K times its size:

> @ = $45K,

g = $25K,

o = $15K,

¢p = $15K



Modified Parliament Example

Suppose we distribute v(S) by giving each party its Shapley value

Does any party or group of parties have an incentive to leave and form a
smaller coalition T?

> V(T) = $1K times the number of representatives in T
= the sum of the Shapley values of the partiesin T

> If each party in T gets its Shapley value, it does no better in T than in S

> If some party in T gets more than its Shapley value, then another party
In T will get less than its Shapley value

No case in which every party in T does better in T than in S

No case in which all of the parties in T will have an incentive to leave S and
join T

Thus the Shapley value is in the core



