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1 Overview

In this presentation, we describe byzantine agreement and broadcast with re-
spect to rational adversaries with particular preferences on the output of the
honest players.

2 Introduction

The Byzantine Generals Problem was introduced in 1982 by Leslie Lamport,
Robert Shostak, and Marshall Pease in 1982 [3] as a way to describe, in abstract
terms, their earlier work on distributed computation among fallible processors
[4]. Lamport, Shostak, and Pease introduced two protocols in their paper [3]:
Byzantine Agreement (BA) and Broadcast. Let

• n be the number of generals in the Byzantine army,

• t be the number of traitors,

• v(i) be the input of player i.

• and w(i) be the output of player i.

Each player uses some mechanism to combine v(1), v(2), v(3), . . . , v(n) into
a single plan of action.

Definition 1 (Broadcast) Assume player i acting as the sender and sending
his input v(i) to the remaining n − 1 receivers. A protocol is a broadcast pro-
tocol tolerating t traitors if the following two conditions hold for any adversary
controlling at most t traitors:
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IC1: All honest players receive the same message.

IC2: If the sender is loyal, then every honest player outputs the sender’s input.

Definition 2 (Byzantine Agreement) Assume each player i initially has in-
put v(i). A protocol is a Byzantine agreement protocol tolerating t traitors if
the following conditions hold for any adversary controlling at most t traitors:

IC1’: All honest players act on the same order. That is, if i and j are honest
players, then w(i) = w(j).

IC2’: If all honest players begin with the same input value, i.e. v(i) = c ∀i,
then all honest players have that same value as output, i.e. w(i) = c ∀i.

While we only consider cases where all pairwise communication is possible,
the Byzantine agreement problem can be defined on graphs lacking full connec-
tivity.

3 Rational adversaries

3.1 Prior consideration

In traditional cryptography, the goal is always to prove that the security con-
ditions are satisfied no matter what algorithm the adversary chooses to use.
However, in some cases it might be desirable to weaken this definition. One
such weakening is to borrow from game theory and introduce the idea of ra-
tional adversaries. In this case, it is assumed that the adversary has some
particular goal rather than just to arbitrarily violate security conditions. The
goal is to show that in this case protocols can be developed that are superior to
those that are possible against generic malicious adversaries.

3.2 Byzantine agreement and broadcast

We now apply the idea of rational adversaries to Byzantine agreement and
broadcast. We assume that the adversary has some goal that it is trying to
achieve. Once a utility function has been chosen, a definition of security is
immediately implied:

Definition 3 (Security against rational adversaries) A protocol for Byzan-
tine agreement or broadcast is secure against rational adversaries with a partic-
ular utility function if for any adversary A1 against which the protocol does not
satisfy the security conditions there is another adversary A2 such that:

• When the protocol is run with A2 as the adversary, all security conditions
are satisfied.

• The utility achieved by A2 is greater than that achieved by A1.
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3.3 Utility definitions

We limit ourselves to protocols that are attempting to broadcast or agree on a
single bit. In our first definitions, we will consider all output to be one of the
following types:

• All honest players output 1.

• All honest players output 0.

• Honest players have disagreeing output.

This is, of course, a substantial simplification of possible outcomes. For example,
some sorts of disagreement could be preferred over any unanimous output while
other types are disliked. Nevertheless, these outcomes capture a meaningful
portion of potential outcome variation.

Definition 4 (Strict preferences) An adversary with strict preferences is one
that will maximize the likelihood of its first-choice outcome at all costs. For a
particular strategy, let a1 be the probability of the adversary achieving its first-
choice outcome (of the three listed above) and a2 be the probability of achieving
the second choice outcome. Let b1 and b2 be the same probabilities for a sec-
ond potential strategy. We say that the first strategy is preferred if and only if
a1 > b1 or a1 = b1 and a2 > b2.

Definition 5 (Linear utility) An adversary with linear utilities has its utility
defined by

utility = u1 Pr[players output 0]+u2 Pr[players output 1]+u3 Pr[players disagree]
(1)

where u1, u2, and u3 are arbitrary parameters. One strategy is preferred over
another if the resulting utility is higher.

In the next definition, we stop considering all disagreements to be equal:

Definition 6 (0-preferring) A 0-preferring adversary is one for which

utility = E[number of honest players outputting 0]. (2)

4 Results

4.1 Equivalence of Broadcast and Byzantine Agreement

The equivalence between Broadcast and Byzantine agreement is not as straight-
forward in the rational adversary setting. Assume that we have a broad-
cast protocol that is secure against adversaries with strict preferences in the
0s>1s>disagreement order. To construct a Byzantine agreement protocol, we
tell each player to use this broadcast protocol to send their values to each other
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and then take the majority of values received. If the broadcast protocol’s secu-
rity is not violated, this reduction is sound. However, we can no longer assume
that its security wouldn’t be violated.

Consider the case where there are five players, P1 and P2 with input 0 and
P3, P4 and P5 with input 1.

However, imagine that the adversary could break the broadcast protocols.
It is possible that they could break the protocols in the particular way.

Theorem 1 Assume that a Byzantine agreement protocol exists that is secure
against rational adversaries with a particular set of preferences on the probability
distribution of possible outcomes. (We note that this preference set must be
independent of the input honest players have.) A protocol can be constructed for
broadcast that is secure against the same type of rational adversary.

Proof: The sender simply sends his input to all players. Then they all (includ-
ing the sender) execute the Byzantine agreement protocol using those received
values as input. The players use the output of this Byzantine agreement proto-
col as the output of the broadcast protocol. Because the output of the broadcast
protocol will be identical to that of the Byzantine agreement protocol, the ad-
versary will never benefit by breaking the Byzantine agreement protocol in a
way that is contrary to his preferences on the larger broadcast protocol. Because
of this, we can assume that the Byzantine agreement protocol works correctly,
and the reduction then proceeds without problem.

4.2 A simple protocol

We begin with the case that the adversary has strict preferences with ordering
0s>1s>disagreement. Protocol 1 is effective in this case.

Protocol 1

1. Each player sends his input to every other player.

2. Each player outputs the majority of all the inputs that he has received. If there is no
strict majority, output 0.

Theorem 2 Protocol 1 achieves Byzantine agreement in the presence of a ra-
tional adversary with strict preferences and ordering 0s>1s>disagreement when
that adversary controls t players, where t < n/2.

Proof: If all the honest players held the same input, the protocol would termi-
nate with the honest players agreeing on that input despite what the adversary
says. This is also true of not all honest players agreed, but those with a given in-
put make up a majority of players. On the other hand, if the honest players with
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input 1 do not form a majority, it is in the adversary’s interests to send 0’s to
all honest players as this allows him to guarantee his first choice output. Thus,
the adversary will never choose to force disagreement. Since disagreement will
never happen and unanimous honest parties always receive the correct output,
the security conditions are met and the protocol is valid.

Theorem 3 Protocol 1 achieves Byzantine agreement in the presence of a ra-
tional adversary who controls t players where t < n/2 as long as the adversary’s
most preferred outcome is unanimous output of 0s by all players.

Proof: Let a be the number of honest players with input 1. If a > n/2 the
adversary cannot influence the outcome, and all honest players will output 1.
This assures that when input is unanimously 1, the correct output is given. In
all other cases, the adversary can act as if its controlled players were honest with
input 0 and force all players to output 0. Since this is its most-preferred outcome,
it will not use any strategy that does not guarantee this result. Since these two
cases are exhaustive, disagreement will never occur. Since the outcomes that
result are also consistent with the security conditions for Byzantine agreement,
the protocol achieves Byzantine agreement correctly.

4.3 A general solution

The natural next task is to design another simple protocol that will work for the
disagreement>0s>1s case. However, we have not succeeded at finding such a
simple and efficient protocol secure against this adversary. Instead, we conclude
by presenting a very powerful protocol that solves the broadcast problem for
this and many other adversary preferences (including many not explicitly defined
here). This protocol is based on detectable broadcast, which was defined by Fitzi
et al. [2]. In addition to the definition, they give a protocol that realizes their
definition. This protocol is much less efficient than the other solutions discussed
previously. It is, however, a very powerful feasibility result.

We begin by defining detectable broadcast.

Definition 7 (Detectable broadcast) A protocol for detectable must satisfy
the following three conditions:

• Correctness: All honest players either abort or accept and output 0 or 1.
If any honest player aborts, so does every other honest player. If no honest
players abort then the output satisfies the security conditions of broadcast.

• Completeness: If all players are honest, all players accept (and therefore
achieve broadcast without error).

• Fairness: If any honest player aborts then the adversary receives no in-
formation about the sender’s bit.
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The protocol given by [2] requires t+ 5 rounds and O(n8(logn+ k)3) total bits
of communication, where k is a security parameter. This compares with one
round and n2 bits for the simple protocols we have already given.

We now use detectable broadcast to achieve broadcast against rational ad-
versaries with strict preferences and a disagreement>0s>1s preference ordering.
This is done with Protocol 2:

Protocol 2

1. Run the detectable broadcast protocol with the same sender and input.

2. If no abort occurs, output the result of the detectable broadcast protocol. If abort
does occur, output 1.

Protocol 2 is obviously secure. What is most impressive is that the detectable
broadcast protocol in [2] and therefore our resulting protocol is actually secure
as long as t < n. This means that for the broadcast case (but not Byzantine
agreement) we can do even better than we did in the previous section (though
with less efficiency).

We note also that a similar protocol can be constructed for Byzantine agree-
ment. The protocol that [2] construct has two steps. The first step establishes
a public key infrastructure. It is in this step that an abort is possible. Once
a public key infrastructure has been established, broadcast (for t < n) and
Byzantine agreement (for t < n/2) are both easily achieved.
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