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AdWord Auction
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AdWord Auction

• Internet search companies such as Google, 
Yahoo,  and MSN make billions of dollars out of it

• They decide what ads to display with each query 
to maximize revenue

• Users typing in query keywords, called AdWords
• Business place bids for individual AdWords

together with a daily budget limit
• Search engines earn money from business when 

they show their ads in response to queries and 
charge them the second highest bid
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Google AdWords
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Online AdWord Auction
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Display Ad Auction
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Display Ad Auction
• Impression: Display/Banner Ads, Video Ads, Text 

Links

• Cost-Per-Impression (CMI/CPM)

• Done through offline negotiations+ Online 
allocations

• Q1, 2010: One Trillion Display Ads in US, $2.7 Billion

• Top publisher: Facebook, Yahoo and Microsoft sites

• Top Advertisers: AT&T, Verizon, Scottrade

• Ad Serving Systems e.g., Facebook, Google 

DoubleClick Ad Planner
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DoubleClick Ad Planner
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Google Ad Planning
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Online Display Ad
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AdCell Auction
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AdCell Auction

• Online Advertising

– Major source of revenue

• AdCell vs AdWords

– Intrusive delivery (TEXT,MMS, etc)

– Limited number of Ads per customer

– System generated queries

• ShopAlerts by AT&T

• Formulated in [AHLPS’11, ESA’11]
12



AdWords

AdWords vs AdCell

Search Queries:
(keywords)

Advertisers:

𝑢𝑖𝑗

𝑏𝑖

AdCell

System Generated Queries:
(customer id, location, time)

Advertisers:

𝑢𝑖𝑗

𝑏𝑖

𝑐𝑘

pizza

Papa Johns

(Mohammad, downtown CP, 12:30pm)

Papa Johns

𝑗

𝑖
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Customer Policy

– AdCell is intrusive 

– Incentivizing customers

• Discount on service plan if they opt in

• Limited number of ads per month
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Online Bipartite Matching

• All these three problems are generalizations of Online 
Bipartite Matching:

• The input to the problem is:
– bipartite graph G = (V1 U V2, E)
– V1 is the set of advertisers and V2 is the set of keywords
– the vertices in V2 (keywords) arrive in an on-line fashion 
– the edges incident to each vertex u in V2 are revealed when u 

arrives and determine the advertisers who want  keyword  u. 

• When u arrives, the algorithm may match u to a previously 
unmatched adjacent vertex in V1 , if there is one. 

• Such a decision, once made, is irrevocable. 
• The objective is to maximize the size of the resulting 

matching.
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Online Bipartite Matching: Greedy

• Any greedy algorithm that always matches a 
vertex in V2 if a match is possible constructs a 
maximal matching, and therefore such an 
algorithm has a competitive ratio of ½=0.50 (by a 
double counting argument).

• Competitive ratio: The ratio of our algorithm to 
the best (optimum) offline algorithm.

• On the other hand, given any deterministic 
algorithm, it is easy to construct an instance that 
forces that algorithm to find a matching of size no 
greater than half of the optimum.
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Online Bipartite Matching: Randomized

• Any randomized algorithm that chooses a single 
random ranking on the vertices in V1

• When a vertex u in V2 arrives among its 
unmatched neighbors assign u to the one than has 
the highest ranking

• This produces a competitive ratio 1-1/e≈0.63
• This is the best that we can do in the online world.
• However, if we know stochastic information like 

distributions of the keywords (the probability that 
a node u in V2 arrives)  and also the budget to the 
bid ratio is very large, we can obtain a competitive 
ratio very close to 1.
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Motivating Problems

• Online Advertising
– AdWord Auction

• Budget constraints (advertisers)

– Display Ad Auction
• Capacity constraints (advertisers)

– AdCell Auction
• Budget constraints (advertisers) & capacity constraints 

(customers)

• The goal is maximizing revenue 
– We charge the bids themselves (first price-auction)
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Model

Queries:

Bidders:

𝑢𝑖𝑡

𝑏𝑖

𝑐𝑘
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∼ 𝐷𝑡

• 𝐷𝑡: tth query drawn from distribution 𝐷𝑡

• 𝑖: bidder, with budget 𝑏𝑖 and bid 𝑢𝑖𝑗for every 
query of type 𝑗 in the support of 𝐷𝑡

• 𝑘: the set to which query 𝑥𝑡 belongs.

• 𝑐𝑘: capacity of set 𝑘. 



Use of History (model-based)
• Model
• 3 Variants of the problem

– Only Budget Constraint
– Only Capacity Constraint
– Both Budget & Capacity Constraints

• Prophet Inq. Setting: Known but different distributions 
for different times, different customers, etc. 
(similarities to a Bayesian setting)

• As we have done emperical analysis using AT&T 
YellowPages data, IN PRACTICE we know probability 
distribution of 95% of  queries (search keywords) 
[AHHKLZ’12].

• (Approximation) algorithms for real-world instead of 
the worst case
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Secretary setting vs. Prophet Inq. setting
• Secretary problem is a classic optimal stopping theory problem 

studied since 1963 [Dynkin] and more recently in auction design 
[HKP04, ACM EC’04] (many follow-up work)

• Secretary setting: given a sequence of random variables x1 ,…,xn 
drawn i.i.d. from the same distribution (or the random order 
model), an onlooker has to choose a certain number k of values 
and cannot choose a past value.

• Prophet Inq. is another well-studied optimal stopping theory 
problem since the 1970s [KS77, KS78, Ken87] and more recently 
in computer science [HKS07, AAAI’07]

• Prophet Inq. setting: given possibly different distributions of 
random variables x1 ,…,xn an onlooker has to choose a certain 
number k of values and cannot choose a past value

• Called Prophet Inq. since a prophet with complete foresight has 
only a bounded advantage over an onlooker who observes the 
random variables one by one

• For k=1, the tight bound of ½ is known which we generalize.27



IP (budgeted)

• 𝑏𝑖: budget of buyer 𝑖

• 𝑢𝑖𝑗: bid of buyer  𝑖 for a query of type  𝑗

• 𝑅𝑗𝑡: Indicator random variable which is 1 iff the 𝑡𝑡ℎquery is of type 𝑗

• 𝑥𝑖𝑗𝑡: allocation variable
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IP (capacitated)

29

• 𝑐𝑖: capacity of advertiser 𝑖

• 𝑢𝑖𝑗: bid of buyer  𝑖 for a query of type  𝑗

• 𝑅𝑗𝑡: Indicator random variable which is 1 iff the 𝑡𝑡ℎquery is of type 𝑗

• 𝑥𝑖𝑗𝑡: allocation variable



Expectation LPs
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Online Algorithm (budgeted)

• Algorithm 𝐴𝑙𝑔𝐵:
– Solve this LP and let 𝑥𝑖𝑗𝑡

∗ denote the optimal assignment.

– Upon arrival of query 𝑡 of type 𝑗 allocate it to buyer 𝑖 w.p. 
𝑥𝑖𝑗𝑡
∗

𝑝𝑡𝑗
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• Claim: 𝐴𝑙𝑔𝐵 obtains at least(1 −
𝑘𝑘

𝑒𝑘𝑘!
)of 𝐿𝑃𝐵 (in expectation)

• 𝑋𝑖𝑗𝑡 =  
𝑢𝑖𝑗 𝑤. 𝑝. 𝑥𝑖𝑗𝑡

∗

0 𝑤. 𝑝. 1 − 𝑥𝑖𝑗𝑡
∗

• Expected revenue of 𝐴𝑙𝑔𝐵is:  E[ 𝑖 min  𝑗,𝑡 𝑋𝑖𝑗𝑡 , 𝑏𝑖 ]

• Objective value of 𝐿𝑃𝐵 is:  𝑖  𝑗,𝑡 𝐸[𝑋𝑖𝑗𝑡]

• We show that  for each i :

𝐸 min  𝑗,𝑡 𝑋𝑖𝑗𝑡 , 𝑏𝑖 ≥ (1 −
𝑘𝑘

𝑒𝑘𝑘!
)min  𝑗𝑡 𝐸[𝑋𝑖𝑗𝑡] , 𝑏𝑖
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≈

, where k is the minimum of the budget to the bid ratios



Expectation of Truncated Sum (ETS) 
vs Truncated Sum of Expectations (TSE)

• Theorem (ETS vs TSE):

– If 𝑋1, ⋯ , 𝑋𝑛 are independent random variables, 

𝑘 ∈ 𝑁, 𝑏 ∈ 𝑅+ and all 𝑋𝑗 ∈ [0,
𝑏

𝑘
] then the 

following holds:

• 𝐸 min  𝑗 𝑋𝑗 , 𝑏 ≥ (1 −
𝑘𝑘

𝑒𝑘𝑘!
) min  𝑗 𝐸[𝑋𝑗] , 𝑏

≥ (1−
1

2𝜋𝑘
) min  𝑗 𝐸[𝑋𝑗] , 𝑏
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Proof of ETS-vs-TSE

• Create 𝑌1, ⋯ , 𝑌𝑛 such that:
– E 𝑌𝑖 = 𝐸[𝑋𝑖]

– 𝑌𝑖 ∈ {0,
𝑏

𝑘
}

• Then

– 𝐸 min  𝑗 𝑌𝑗 , 𝑏 ≥ 𝐸 min  𝑗 𝑋𝑗 , 𝑏

• So it is enough to show that

– 𝐸 min  𝑗 𝑌𝑗 , 𝑏 ≥ (1 −
𝑘𝑘

𝑒𝑘𝑘!
)

min  𝑗 𝐸[𝑌𝑗] , 𝑏
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Yi = C w.p. E[Xi]/C where C=b/k
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Proof of ETS-vs-TSE (cont’d)

• Take any 𝑌𝑗1 and 𝑌𝑗2

• Replace them with RVs 𝑌′𝑗1 and 𝑌′𝑗2 such that

– 𝑌′
𝑗1 , 𝑌

′
𝑗2 ∈ {0,

𝑏

𝑘
}

– E 𝑌′
𝑗1] = 𝐸[𝑌′

𝑗2 = 𝐸 𝑌𝑗1 + 𝑌𝑗2 /2

• Then
– 𝐸 min  𝑗 𝑌𝑗 , 𝑏 ≥ 𝐸 min 𝑌′

𝑗1 + 𝑌′
𝑗2 +  𝑗 ≠𝑗1,𝑗2

𝑌𝑗 , 𝑏

• So it is enough to prove the theorem for the case where E 𝑌𝑗1] = 𝐸[𝑌𝑗2
for all 𝑗1 and 𝑗2. 

• The final step involves simple algebraic manipulations which we omit.
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A Less Simple Model: Capacity Only

36

• Consider one bidder with two query types q1 and q2

• Bid for q1 is 1 and for q2 is (1-ε)/ε

• The first query is of type q1 with Prob. 1 and the 
second query is of type q2 with Prob. ε

• The expected revenue of any online (randomized) 
algorithm is 

• However optimum offline would allocate the 
second query if it arrives; otherwise allocate the 
first query. Its expected revenue is



A Less Simple Model: Capacity Only
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• This is the lower bound ½ also for Prophet Inq.  
known from the 1970s for which we generalize the 
upper bound.

• This is in contrast to factors 1- 1/e and better for the 
same distribution case, e.g., [MSVV’05,FMMM’09] 

• Note that without stochastic information we cannot 
get any approximation factor (generalizes the 
secretary problem in this setting).



The Capacitated Case

• Algorithm 𝐴𝑙𝑔𝐶:

– Solve the LP and let 𝑥𝑖𝑗𝑡
∗ denote the optimal assignment.

– Run a dynamic program for each advertiser: 𝐸𝑖,𝑡
𝑟

– Upon arrival of query 𝑡 of type 𝑗, select advertiser 𝑖 w.p. 
𝑥𝑖𝑗𝑡
∗

𝑝𝑡𝑗
then allocate it to 𝑖 iff 𝑢𝑖𝑗 + 𝐸𝑖,𝑡+1

𝑟−1 ≥ 𝐸𝑖,𝑡+1
𝑟
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Dynamic Program of 𝐷𝑃𝑖

• For each advertiser 𝑖 we can compute 𝐸𝑖,𝑡+1
𝑟

using the following dynamic program:

39

, where the quantity is the expected benefit we get 
from bidder i with only r remaining capacity at or 
after time t.



• Claim: 𝐷𝑃𝑖 obtains at least 
1

2
of 𝐿𝑃𝐶 for each 

advertiser𝑖 (in expectation)

• We show that for each advertiser 𝑖 :

𝐸𝑖,1
𝑐𝑘 ≥

1

2
 𝑡  𝑡 𝑢𝑖𝑗𝑥𝑖𝑗𝑡

∗
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Stochastic Uniform Knapsack (SUK)

• A knapsack of capacity 𝑐

• Item 𝑗 arrives with prob 𝑝𝑗 and has value 𝑣𝑗

• Partition the items based on arrival time to 
𝑇1, 𝑇2, ⋯

• Dynamic Program (DP):
• At time 𝑡, if item 𝑗 arrives: put it in the knapsack iff 𝑣𝑗 +

𝐸𝑡+1
𝑟−1 ≥ 𝐸𝑡+1

𝑟

41

at time t

t t t

t
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Dynamic Program for SUK

• Dynamic Program (DP):
• At time 𝑡, if item 𝑗 arrives: put it in the knapsack iff 𝑣𝑗

+ 𝐸𝑘,𝑡+1
𝑟−1 ≥ 𝐸𝑘,𝑡+1

𝑟

• 𝐸𝑡
𝑟 =  𝑗∈𝑇𝑡

𝑝𝑗 max 𝑣𝑗 + 𝐸𝑡+1
𝑟−1, 𝐸𝑡+1

𝑟 + (1 −  𝑗∈𝑇𝑡
𝑝𝑗)𝐸𝑡+1

𝑟

• Theorem (SUT-DP):
– Let 𝑂𝐷𝑃 = 𝐸1

𝑐 and 𝑂∗ =  𝑗 𝑝𝑗𝑣𝑗. If  𝑝𝑗 ≤ 𝑐 then 

ODP ≥
1

2
𝑂∗

42

t
t



Proof of Theorem (SUT-DP)

• 𝑂𝐷𝑃 = 𝐸1
𝑐

• 𝑂∗ =  𝑡 𝑝𝑡𝑣𝑡

• 𝐸𝑡
𝑟 = max(𝑝𝑡𝑣𝑡 + 1 − 𝑝𝑡 𝐸𝑡+1

𝑟−1, 𝐸𝑡+1
𝑟 )

• Lemma:
– 𝐸𝑡

𝑟 has decreasing marginal value in 𝑟, 
i.e.: 𝐸𝑡

𝑟 − 𝐸𝑡
𝑟−1 ≤ 𝐸𝑡

𝑟−1 − 𝐸𝑡
𝑟−2 , 

Therefore: 𝐸𝑡
𝑟−1 ≥

𝑟−1

𝑟
𝐸𝑡

𝑟

• Lemma:

– 𝐸𝑡
𝑟 ≥ max(𝑝𝑡𝑣𝑡 + 1 −

𝑝𝑡

𝑟
𝐸𝑡+1

𝑟 , 𝐸𝑡+1
𝑟 )
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Proof of Theorem (SUT-DP)
• 𝑂𝐷𝑃 = 𝐸1

𝑐

• 𝑂∗ =  𝑡 𝑝𝑡𝑣𝑡

• 𝐸𝑡
𝐶 ≥ max(𝑝𝑡𝑣𝑡 + 1 −

𝑝𝑡

𝑟
𝐸𝑡+1

𝐶 , 𝐸𝑡+1
𝐶 )

• Lemma:
• WLOG, we may assume 𝑂∗=1 
• then 𝑂𝐷𝑃/𝑂

∗ is at least:

𝑢 = 𝑡𝑚𝑎𝑥
46



Proof of Theorem (SUT-DP)
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Proof of Theorem (SUT-DP)

• We construct a feasible dual that obtains ½:

– Setting 𝛼𝑡 = 𝛾 and 𝛽𝑡 = 𝛽𝑡−1 −
𝑝𝑡−1

𝐶
𝛾 and 𝛽1 = 1 − 𝛾

– Then 𝛽𝑡 = 1 − 𝛾 − 𝛾 𝑘=1
𝑡−1 𝑝𝑘

𝐶
≥ 1 − 2𝛾

– So we can set 𝛾 = 1/2
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Capacity at least k
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• Theorem:

If the capacity of each customer is at least k,  then 
the same algorithm AlgC obtains  at least                                                  
fraction of the optimum solution in expectation.

• The analysis is more complicated and needs a 
process called Sand/Barrier to analyze it 
[AHL’12, ACM EC’12].
• So if the capacities are large enough we obtain 
almost the optimum expectation.



General Model (Capacity and Budget)
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• This is the case of AdCell Auction
• We write the combined LP of the capacitated case   
and the budgeted case by writing both set of   
constraints
• The algorithm AlgBC is the same as that of the 
capacitated case (AlgC) except we are using the new 
LP
• Theorem:

 AlgBC obtains    (              ) (             ) ≈ 1 
fraction of the optimum in expectation (VERY 
PRACTICAL). 

• The proof comes due to negative correlations.



Online Stochastic Generalized Assignment Problem
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• Generalization of all problems considered so far, as 
well as stochastic knapsack
• Items arrive online, each with a value and a size 
maybe dependent to bins 
• Upon arrival of an item, it can be placed in a bin or   
discarded
• Distribution is available about size and value but the 
items are coming in an adversarial order
• Objective is to maximize the value of the placement



Online Stochastic Generalized Assignment Problem
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• Theorem: Under the assumption that no item takes 
more than 1/k capacity of any bin of non-zero value, 
we can obtain a                -competitive algorithm.

•The algorithm is competitive even when the 
adversary can do fractional assignment 
 application to banner advertisement (the 
problem is independent-set hard otherwise)

• The bound is tight for k=1

1
1

k




Online Stochastic Generalized Assignment Problem
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Ideas of the proof: 
• First we write an Expected LP as before
• Upon arrival of an item, we decide the bin that we 
want to try based on x variables as before
• To decide whether we really want to assign the item 
to the selected bin we are running a continues version 
of sand/barrier process (a.k.a. the magician problem)
• Intuitively a probabilistic algorithm which derives a 
new bound like Chernoff but with zero violation prob.
• The proof is involved; but uses induction as a basis



Questions?
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Thanks for your attention…

تشکر

Obrigado


