
CMSC 858F: Assignment 3

Due Date: Friday, April 18, 2014 before 4 pm

Instructor: MohammadTaghi Hajiaghayi

Thursday 24th April, 2014

Please TYPE in your solutions after each problem and put your homework in my mailbox in the first
floor of AV Williams. For definitions, please see slides, handwritten notes, and other course materials (or
even Wikipedia).

Question 1 : Assume we want to sell k identical items to n bidders each wants one item with a value for
the item. Design a polynomial-time mechanism which is truthful with maximum efficiency (social welfare)
and charges each bidder a non-negative value (note that n can be smaller than k).

Proof : We use the VCG mechanism with Clarke Pivot Rule. This ensures the the mechanism is truthful
and maximizes social welfare (see lecture notes). Let the values of the bidders be b1 ≥ b2 ≥ . . . ≥ bn. If
k ≥ n, then everyone get an item for free. So, suppose n > k. Let A,B be the set of events including, not
including bidder i respectively. Let a, b the optimal allocaions in A,B respectively. By the Clarke Pivor
Rule, the payment of bidder i is given by

pi =
∑
j 6=i

vi(b)−
∑
j 6=i

vi(a)

= (b1 + b2 + . . .+ bi−1 + bi+1 + . . .+ bk + bk+1)− (b1 + b2 . . .+ bi−1 + bi + . . .+ bk)

= bk+1

So, the first k bidders are charged bk+1 each and all others pay 0. Since the values {b1, b2, . . . , bn} can be
sorted in polynomial time, the mechanism is polynomial time.
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Question 2 : Assume we want to sell k items to n bidders each has different values for different items
but only wants at most one item at the end. Design a polynomial-time mechanism which is truthful with
maximum efficiency (social welfare) and charges each bidder a non-negative value (note that again n can be
smaller than k).

Proof : This is similar to Question 1. Again we use the VCG mechanism with Clarke Pivot Rule. This
ensures the the mechanism is truthful and maximizes social welfare (see lecture notes). Consider a bipartite
graph G with the set of bidders B and the set of items I as the bipartitions. Since each bidder wants at most
one item, we add an edge {b, i} with weight equal to valuation of bidder b for item i. Now, an allocation
corresponds to a weighted matching in G. For each b ∈ B, let Gb denote the graph G \ {b} and Mb denote
the weight of max weight matching in Gb. Furthermore, let M be the weight of max weight matching in G
and ωb denote the weight of edge incident on b in the max weight matching in G.

By the Clarke Pivot Rule, the payment of bidder b is given by

pb = Mb − (M − ωb)

Since, we have to compute (n+ 1) weighted bipartite matchings, the mechanism runs in polynomial time.
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Question 3 : (A) Assume an auctioneer has m items to sell where each has an unlimited supply. Also as-
sume there are n single-minded bidders who want subsets of these items. Give a polynomial-time mechanism
which only sets prices for items and has revenue at least Ω( 1

logn+logm )-fraction of the optimum revenue.

Proof : This solution is from [5]. Bidder i values bundle Si at vi, and all other bundles at 0. For each
u ∈ [n] define qi = vi

|Si| . We index the bidders so that q1 ≥ q2 ≥ . . . qn. Consider the algorithm which prices

all items at qi. Then a person j buys his bundle Sj if and only if vj ≥ qi · |Sj |, i.e., qj ≥ qi. Hence, the profit

of this algorithm is Ri =
∑i

j=1 |Sj | · vi
|Si| . Run this algorithm for each i, and output the i with the maximum

profit. Let us call this maximum profit as R. Then, we have

R ≤ OPT

≤
n∑

i=1

vi Since

n∑
i=1

vi is a trivial upper bound on OPT

=

n∑
i=1

Ri · |Si|∑i
j=1 |Sj |

Since Ri =

i∑
j=1

|Sj | ·
vi
|Si|

= R ·
n∑

i=1

|Si|∑i
j=1 |Sj |

Since Ri ≤ R for each i ∈ [R]

≤ R ·
( n∑

i=1

|Si|∑
k=1

1

k +
∑i−1

j=1 |Sj |

)
Since |Si| ≥ k for each 1 ≤ k ≤ |Si|

≤ R ·

∑n
j=1 |Sj |∑
i=1

1

i
Rearranging

≤ R ·O(log(

n∑
j=1

|Sj |)) since Hn ≤ O(log n)

≤ R ·O(log n+ logm) since

n∑
j=1

|Sj | ≤ n ·m
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Question 3 : (B) In case each single-minded bidder wants a set of size at most 2, give a mechanism with
revenue at least a constant fraction of the optimum revenue.

Proof :This proof is from [2]. We build a graph G with the vertex set as the set of items. The edge set is
added as follows:

• For each bundle {i, j} which is valued at value wi,j by a customer, we add an edge {i, j} of weight wi,j .

• For each bundle {i} which is valued at value wi by a customer, we add a self-loop {i, i} of weight wi

First, we give a simple 2-approximation for the case when G is bipartite. Specically, consider the optimal
price-vector p∗, and let OPTL be the amount of money it makes from nodes on the left, and OPTR be the
amount it makes from nodes on the right.Thus, OPT = OPTL + OPTR. Notice that if one takes p∗ and
zeroes out all prices for nodes on the right, then this has profit at least OPTL since all previous buyers still
buy (and some new ones may too). Therefore, we can algorithmically make profit at least OPTL by setting
all prices on the right to 0, and then separately fixing prices for each node on the left so as to make the
most money possible on each node. This makes the optimal profit subject to all nodes on the right having
price 0 because no edges have two distinct endpoints on the left and so the profit made from some node i on
the left does not affect the optimal price for some other node j on the left. Similarly we can make at least
OPTR by setting prices on the left to 0 and optimizing prices of nodes on the right. So, taking the best of

both options, we make max{OPTL,OPTR} ≥
OPT

2
.

Now we consider the general (non-bipartite) case. Define opte to be the amount of profit that OPT
makes from edge e. We will think of opte as the weight of edge e, though it is unknown to our algorithm.
Let E2 be the subset of edges that go between two distinct vertices, and let E1 be the set of self-loops. Let
OPT1 be the profit made by p∗ on edges in E1 and let OPT2 be the profit made by p∗ on edges in E2, so∑

e∈Ei
opte = OPTi for i = 1, 2 and OPT1 + OPT2 = OPT. Randomly partition the vertices into two sets

L and R. Since each edge e ∈ E2 has a 1/2 chance of having its endpoints on different sides, in expectation
OPT2

2 weight is on edges with one endpoint in L and one endpoint in R. Thus, if we simply ignore edges in
E2 whose endpoints are on the same side and run the algorithm for the bipartite case, the profit we make in

expectation is at least
1

2
·
(

OPT1 +
OPT2

2

)
≥ OPT

4
. This algorithm can be derandomized using standard

methods.
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Question 4 : In the Unique Coverage problem, given a universe U of n elements, a collection S of m
subsets of U , we want to find a sub-collection S which maximizes the number of elements that are uniquely
covered, i.e., appear in exactly one set of S. Assuming there is no Ω(log n)-approximation algorithm for
the unique coverage problem, prove that we cannot approximate the problem in Question 3(A) by a factor
better than Ω(log n) by a transformation of Unique Coverage to the problem in Question 3(A) where n is
the number of buyers (and thus the algorithm that you designed for question 3(A) is essentially tight).

Proof : This solution is from [3]. The Unique Coverage problem is defined as follows:

Unique Coverage
Input: An universe U = {e1, e2, . . . , en} of elements, and a collection S = {S1, S2, . . . , Sm} of
subsets of U
Objective: Find a sub-collection S ⊆ S which maximizes the number of elements that are uniquely
covered, i.e., appear in exactly one set of S.

Consider an instance of Unique Coverage given by (U,S). We build an instance of the problem from
Quesion 3(a) as follows:

• Each element ei maps to a buyer bi

• Each set Sj maps to an item Ij

• For each i ∈ [n], the buyer bi has valuation 1 for the bundle given by Bi = {Ij : j ∈ [m], ei ∈ Sj}

Because all valuations are either 0 or 1, we can assume the prices are from the range (0, 1). The next lemma
uses randomized rounding to show that we can assume that the prices are from the set {0, 1} by paying a
constant factor loss in the total profit.

Integral Prices at a Cost of Constant Factor in Profit
Lemma: There is a price assignment that uses prices from {0, 1}, and whose prot is within a
constant factor of optimal.
Proof: Consider the optimal assignment of prices pi to items Ii. If any price pi is larger than 1, we
set it to 1 at no cost. Now we round by setting the new price p′i of item Ii to 1 with probability pi

2 ,
and to 0 otherwise. We claim that if ui =

∑
Ij∈Bi

pj < 1 (i.e., the optimal solution gets a prot ui
from buyer bi), then the probability that the seller prots 1 from buyer bi is at least ui

2e .
The probability that the seller prots 1 from buyer bi who desires bundleBi, is

∑
Ij∈Bi

pj

2 πIj 6=Ik∈Bi
(1−

pk

2 ) = πIk∈Bi
(1 − pk

2 )
∑

Ij∈Bi

pj
2

1−
pj
2

. Because
∑

Ij∈Bi
pj ≤ 1

2 , it is easy to see that the quantity is

minimized when all of the pj ’s are equal for Ij ∈ Bi. Thus the probability of profit from bi is at least

(1 ui

2|Bi| )
|Bi| ·

ui
2

1
ui|Bi|

2

. Because 1− x ≥ e2x for 0 ≤ x ≤ 1
2 , this probability is at least eui · ui

2 ≥
ui

2e , as

claimed.
Thus the expected total prot in the modied solution is at least

∑
i
ui

2e , which is 1
2e times the prot

of the optimal solution. This algorithm can be derandomized using the method of conditional
expectation.

Now, each buyer bi will buy its bundle precisely if at most one item is priced at 1, and the rest of the
items are priced at 0. If all items in a bundle are priced at 0, then the seller makes no prot. I exactly one
item is priced at 1 and the rest are priced at 0, then the seller prots by 1. Thus the effective goal is to assign
prices of 0 or 1 in order to maximize the number of bundles for which exactly one item is priced at 1, which
is identical to the original Unique Coverage problem.
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Figure 1: A diameter-3 swap equilibrium graph G

Question 5 : (A) In a network creation game, a swap-equilibria is a connected unweighted graph in which
each vertex v is stable, i.e., if vertex v swaps one of its neighboring edges {v, u} with another non-neighboring
edge {v, w}, its sum of distances to all nodes does NOT decrease. Prove there is a graph of at most 9 vertices
with diameter 3 (there was a conjecture that all swap-equilibria have diameter at most 2, i.e., a star with
some extra edges; here you disprove this conjecture). Hint: you may use a computer program.

Proof : Note that Figure 3 from [1] is not a swap-equilibrium graph: If d1 replaces the edge {d1, c1,1}
with the edge {d1, c2,1}, then the total distance for d1 decreases from 27 to 26.

In fact, we will show that the graph G shown in Figure 1 is a swap-equilibrium graph. It is easy to
see that G has diameter 3. We first define local diameter : consider a vertex v ∈ G = (V,E). Let dG(x, y)
denote the distance between x and y in G, i.e., the length for shortest x− y path in G. Then we define local
diameter of v to be equal to maxw 6=v d(v, w).

The following lemma shows that we do not need to worry about swaps by vertices which local diameter
2:

Vertices of local diameter cannot decrease by swapping
Lemma: Let G be a graph of diameter 3. Any vertex v which has local diameter 2 cannot decrease
its sum by swapping any edge.
Proof: Let v be a vertex of local diameter 2 in G. Note that any swap keeps constant the number
of vertices which are at a distance 1 from v. Thus, the number of vertices at distance ≥ 2 from v
remains also the same. Therefore, it is optimal to keep the distance 2 for all these vertices, i.e., v
cannot decrease its distance with any swap.

In Figure 1, the vertices v2, v4, v5, v7 have local diameter 2. By above lemma, we do not need to worry
about them. Check manually for each swap for each of the vertices v1, v3, v6, v8 (by symmetry it is enough
to check only for v1 and v3).
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Question 5 : (B)(Bonus problem). Can you give a swap-equilibria with diameter 4 or higher?

Proof : OPEN !!
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Question 6 : (Adword Auction with Free Disposal). In an Adword auction, adwords are coming
one by one in an online manner and we should assign each coming adword to one bidder each with different
bids for different adwords and collect his bid as our revenue (first-price auction). We assume that bidder i,
wants at most Ci adwords, i.e., its capacity is Ci.

• First, if Ci =∞ for all i, then present the optimum algorithm for the problem.

• Second, prove that in the worst case our revenue can be arbitrary lower that the revenue in the offline
case that we know all adwords and all bids in advance.

• Third, to resolve the problem in the previous case, a free disposal assumption has been suggested in
the literature. Here, if we already assigned an adword to a bidder and we used its capacity, we can still
assign him to a new adword and do not charge the bidder for the previous adword (and thus we show
an ad of the bidder for a previous adword for free.). In this case, propose a natural greedy algorithm
for the problem and prove that it obtains at least half revenue of the best offline algorithm that knows
all adwords and all bids for them in advance.

Proof :

• The algorithm is to assign each coming adword to its highest bidder. Since the capacities are infinite
in this case, we can always assign the current adword to the highest bidder. Hence we make the most
profit out of each adword, i.e., the algorithm is optimal.

• Consider the following example: There is a bidder u with capacity 1. For the first arriving adword, u
has a bid equal to ε. Any algorithm would either assign the adword to u, or it would leave the adword.
If the adword is assigned, the next adword would be such that the bidder has a bid equal to 1 for it.
The offline algorithm would get a profit of 1 while we make a profit of ε. If the adword is unassigned,
there would be no future adwords. This means we made 0 profit while the best offline algorithm would
get a profit of ε. By changing ε, we can get arbitrarily low competitive ratio.

• This solution is from [4]. With free disposal, the primal is as follows:

max
i∈I,a∈A

wi,axi,a such that
∑
a∈A

xi,a ≤ 1 ∀ i ∈ I and
∑
i∈I

xi,1 ≤ Ca ∀ a ∈ A (1)

The dual is the following

min
(∑

a∈A
Caβa +

∑
i∈I

zi

)
such that βa + zi ≥ wi,a ∀ i ∈ I, a ∈ A and βa, zi ≥ 0 ∀ a ∈ A, i ∈ I (2)

Let E be the edge set we have so far. For each a ∈ A, define

v(a) =

{
0 if |{i : ia ∈ E}| < Ca

mini:ai∈E wi,a otherwise

The online algorithm runs as follows: when an adword i ∈ I arrives, we match it to a bidder a who
maximizes the marginal value given by µ(a) = wi,a − v(a) (leave i unassigned if the marginal value is
negative for all a ∈ A). Initialize all the dual variables a and zi to 0 for each bidder. Set xi,a = 1.
If a previously had Ca adwords assigned to it then we drop the weight of the least valuable of these,
say i′. That is, we set xi′,a = 0. Increase βa by the marginal value µ(a), i.e., βNEW

a = βOLD
a + µ(a) ≥

v(a) + µ(a). Set zi = wi,a − βNEW
a . Clearly, the choice of zi ensures that the dual remains feasible:

since we always increase the β variables, the only constraint that needs to be checked is βa + zi ≥ wi,a.
Now, we claim that the increase in dual objective is at most 2µ(a), which is the increase in the value
of the assignment. Combining this with weak duality (Dual is greater equal Primal) gives us that our
algorithm is (1/2)-competitive.

Note that it is easy to see that βa is greater equal to va at the end of each step (a step is when an
adword arrives and is matched). Initially βa = 0, and at each step it is increased by the marginal
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value. Hence, we have βNEW
a = βOLD

a + µ(a) ≥ v(a) + µ(a) = v(a) + (wi,a − v(a)) = wi,a ≥ vNEW
a

by definition of v(a). Therefore, we have increase in dual objective is µ(a) + (wi,a − βNEW
a ). To show

that this is at most 2µ(a), it suffices to show that wi,a − βNEW
a ≤ µ(a) = wi,a − v(a) which holds since

βNEW
a ≥ vNEW

a ≥ va (since the v(a) values can only go up after each step).

9



Question 7 : A “good thief who has stolen 130-page thesis of an MIT student (the thesis was inside a
knapsack which was stolen from an unattended students office with an open door) wants to return the thesis
and instead surely gets 100$ bonus advertised by the student in several places all over the campus. Can you
help the good thief to complete the transaction without any possibility that police can catch him? Assume
police is reasonably strong (say your assumption about police explicitly) and if you use any cryptographic
or complexity assumption please mention them explicitly as well (the story is a real story and the police
apprehended the poor good thief /).

Proof :
Solution by Melika: The thief should call from a public phone to the student and tell him his bitcoin

account plus the place he has hidden half of the thesis. When the student finds half of the thesis he knows
the thief has the thesis and is not lying. Therefore, he would send him the money. Then the thief can make
another call from the public phone to tell the student where he has hidden the rest of the thesis. Bitcoin is
a peer-to-peer payment system introduced as open source software in 2009 by developer Satoshi Nakamoto.
The digital currency created and used in the system is alternatively referred to as a virtual currency, electronic
money, or a cryptocurrency although it does not meet the generally recognized definition of money. The
bitcoin system is not controlled by a single entity, like a central bank, which has led the US Treasury to call
bitcoin a decentralized currency. (wikipedia)

Solution by Reza: Here we use the fact that the item he has is splittable and the owner would like to
receive all of his thesis. Therefore, the thief would put half of the thesis somewhere he only knows. Then,
inform the owner its place by a fake email. Now, the owner knows that he is the true holder of the thesis
without his real name to be revealed. Now the thief can ask half of the money to be transferred to an online
unrecognizable account. The owner strategy is to give him half of the money and wait for the rest. Now
the thief should put one forth of the thesis somewhere else and ask for one forth of the money and continue
doing so until he can get arbitrarily near the value he desires.

10



References

[1] Alon, N., Demaine, E.D., Hajiaghayi, M.T., Leighton, T.: Basic network creation games. SIAM J.
Discrete Math. 27(2), 656–668 (2013)

[2] Balcan, M.F., Blum, A.: Approximation algorithms and online mechanisms for item pricing. In: EC. pp.
29–35 (2006)

[3] Demaine, E.D., Feige, U., Hajiaghayi, M., Salavatipour, M.R.: Combination can be hard: Approxima-
bility of the unique coverage problem. SIAM J. Comput. 38(4), 1464–1483 (2008)

[4] Feldman, J., Korula, N., Mirrokni, V.S., Muthukrishnan, S., Pál, M.: Online ad assignment with free
disposal. In: WINE. pp. 374–385 (2009)

[5] Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-
maximizing envy-free pricing. In: SODA. pp. 1164–1173 (2005)

11


