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ABSTRACT
Combinatorial auctions have been studied by the multi-

agent systems community for some time, since these auc-
tions are an effective mechanism for resource allocation when
agents are self-interested. One challenge, however, is that
the winner-determination problem (WDP) for combinatorial
auctions is NP-hard in the general case. However, there are
ways to leverage meaningful structure in the auction so as to
achieve a polynomial-time algorithm for the WDP. In this
paper, using the formal scope of parameterized complexity
theory, we systematically investigate alternative parameter-
izations of the bids made by the agents (i.e. the input to
the WDP for combinatorial auctions) and are able to de-
termine when a parameterization reduces the complexity of
the WDP (fixed-parameter tractable), and when a particular
parameterization results in the WDP remaining hard (fixed-
parameter intractable). Our results are relevant to auction
designers since they provide information as to what types of
bidding-restrictions are effective for simplifying the winner
determination problem, and which would simply limit the
expressiveness of the agents while not providing any addi-
tional computational gains.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous—combinatorial auctions, winner deter-
mination problem

General Terms
Algorithms and Theory

Keywords
Auction and mechanism design, combinatorial auctions, pa-
rameterized complexity

1. INTRODUCTION
Auctions are used throughout today’s economy to allo-

cate goods, resources, and services to agents, and there are
numerous investigations into auction design [11, 5, 15, 12,
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13, 9]. The process of determining the allocation of items
is known as the winner determination problem (WDP) [5].
The efficiency of the WDP greatly affects its real-world ap-
plicability, as waiting a long time to determine a winner is
not realistic.

We will consider a type of auction where multiple items
are sold. Typically, when there are many items to auction
the seller will hold multiple single-item auctions or parallel
auctions. Unfortunately, these types of mechanisms do not
allow items to be sold in bundles where the agents have pref-
erences over those bundles. For instance, an agent’s value for
a bundle may not always be the sum of the agent’s value for
each individual item in that bundle. Situations arise where
obtaining two items together is worth more to an agent than
the sum of the values of the individual items. It follows that
we want a mechanism that allows agents to group items to-
gether into a single bid; combinatorial auctions (CAs) allow
us to model this behaviour [5].

A CA consists of a set of n agents, m items to simultane-
ously auction, and the communication of bids to the seller.
An atomic bid consists of a set of items and the price the
agent is willing to pay for those items. A bid graph is a graph
in which each vertex represents a single atomic bid and is
labeled with the highest bid for its bundle of items. Two
vertices are adjacent in a bid graph if and only if they have
an item in common. Agents must communicate bids for ev-
ery possible combination of items, and we assume that this
is done using a language that enables the construction of a
bid graph. For details on possible languages we direct the
reader to Nisan [9]. Solving the WDP for the general CA
is NP-complete [11], and this result is reflected in the fact
that finding the maximum weighted independent set of a
bid graph is also NP-complete [7]. Even if a problem is NP-
hard, we must often research its potential solutions because
in practice, some solution is required. There are a number of
different approaches to analyzing NP-hard problems, one of
which is parameterized complexity theory. We examine the
graph representation of the CA through the formal theory
of parameterized complexity.

Parameterized complexity theory, introduced by Downey
and Fellows [6], relaxes the requirement that an algorithm
runs in polynomial time; instead allowing the running time
to be large in terms of one or more parameters, provided that
it is polynomial with respect to the input size. The goal is to
design algorithms that run efficiently if the parameters are
sufficiently small, regardless of the size of the input. If such
an algorithm exists, the problem it solves is called fixed-
parameter tractable (FPT).



In a CA we view the numbers of agents, items, and the
sizes of the bids as parameters; hence, placing a bound on
some or all of these parameters may help restrict the problem
space and allow us to derive more efficient solutions. Alter-
natively, some parameterizations may not reduce the com-
plexity from the NP-hard general problem. Such a parame-
terization is said to be fixed-parameter intractable. Negative
results such as this can be very important in helping us un-
derstand what makes the problem difficult to solve. Further,
by showing certain parameterizations to be hard, we provide
cases to the research community where we know efficient al-
gorithms cannot be found. This allows others to focus on
other parameterizations that may yeild positive results.

There are a number of previous applications of parame-
terized complexity to mutil-agent systems. Shrot, Aumann,
and Kraus study parameterizations of coalition formation
problems, showing, among other things, that the problems
are FPT in the number of goals, but W [1]-hard in the size
of the coalition [14]. Betzler and Uhlmann explore control
problems for different voting systems, concentrating on the
addition and removal of candidates [2]. In addition, Betzler,
Guo, and Niedermeier explore the parameterized complexity
of the Dodgson Score and Young Score problems, when the
winner is close to being a Condorcet winner [1].

There are also numerous examples in the literature where
restrictions are placed on CAs in order to produce solutions
to the WDP that run in polynomial time [11, 15, 10, 13,
4]. These results do not make explicit use of parameterized
complexity theory, nor do they require its more complex
notions, such as allowing the running time to be arbitrar-
ily bad in terms of one or more parameters. However, the
results presented are similar in nature to our work in that
they work at restricting the problem in order to find effi-
cient solutions. Further, there are some results presented
that show restrictions where the problem remains NP-hard.
For example, Rothkopf et al. consider a number of restric-
tions to combinatorial auctions that result in a polynomial
WDP [11]. For instance, they show that allowing bids on
arbitrary doubletons allows us to solve WDP in polynomial
time, while allowing bids on tripletons reverts back to NP-
hardness. Our investigation complements this previous work
by studying various parameterized versions of the WDP, and
also consider its parameterization after restricting the graph
class of its bid graph. Our results are relevant to auction de-
signers since they provide information as to what types of
bidding-restrictions are effective for simplifying the winner
determination problem, and which would simply limit the
expressiveness of the agents while not providing any addi-
tional computational gains.

We now give an outline of the paper. We begin with a
brief introduction to combinatorial auctions and the winner
determination problem. We then give an overview of param-
eterized complexity and introduce two problems that will be
used throughout the remainder of the paper. In the end of
the Preliminaries section, we introduce bid graphs, which we
use to represent combinatorial auctions.

In Section 3.1, we look at various parameterizations of
the WDP. We show that when the total number of dis-
tinct atomic bits are bounded and the solution satisfies a
given lower bound, then solving the WDP is fixed-parameter
tractable. In contrast, when we restrict each agent to a
bounded number of atomic bids, and require that the solu-
tion be greater than a lower bound, then solving the WDP

is as hard as any solution in the general-case the WDP. This
shows that when agents are “single-minded” [8], the WDP is
still hard.

In Section 3.2, we restrict the structure of the graphical
representation (bid graph) of each agent’s bids. We then
consider the WDP as it applies to these restricted combina-
torial auctions, and require that the solution satisfies a given
lower bound. When the bid graphs are interval graphs, the
problem becomes fixed-parameter tractable. However, if the
bid graphs are chordal graphs, the problem is still hard. For
our main result, we show a class of parameterizations of the
WDP that do not reduce the complexity of the problem.
That is, we show that the problem remains hard when re-
stricting the bid graphs to a wide range of graph classes. We
conclude our results by showing that if the bid graph is a
disconnected graph with at most C components, each having
at most ` vertices, then finding a solution to the WDP that
has value greater than some lower bound is fixed-parameter
tractable. Finally, we present our conclusions.

2. PRELIMINARIES

2.1 Combinatorial Auctions
A CA consists of a set of n agents, and m items to be auc-

tioned. The set of agents will be denoted byN = {1, 2, . . . , n}
and the set of items by M . For any subset S ⊆ M , any agent
i can place a bid bi(S) ∈ Z on S. We assume that bi(S) ≥ 0
for all S ⊆ M and that the agents are self-interested.

Sandholm notes that only the highest bid for each bundle
needs to be considered in order to solve winner determina-
tion [12]. Thus, define b∗(S) as follows:

b
∗(S) = max

i∈N
bi(S)

An atomic bid, denoted (S, p), includes a set of items
S ⊆ M and its bid value, p ≥ 0. We assume that for
each agent i, bids are submitted as a set of atomic bids,
{(Si1, pi1), . . . , (Siri , piri)}.

Calculating the allocation of goods to agents can be done
by solving a integer program, which is NP-hard. We define
a valid outcome X = {S1, S2, . . . , Sl} as a set of bundles
of items, where Sj ⊆ M , |Sj | ≥ 1 for all j and for every
Sj , Sk ∈ X , j 6= k, we have Sj ∩ Sk = ∅. The solution to the
winner determination problem is the following:

max
X

∑

S∈X

b
∗(S)

where X is a valid outcome. It finds a set of disjoint subsets
of M that maximizes the sum of the bids. Note that some
items may not be included in any of the subsets S ∈ X and a
valid outcome does not explicitly state who wins each of the
subsets. However, this can be determined by giving every
bundle S ∈ X to the agent who placed the highest bid for
S.

Any items that are not included in a valid outcome we
will consider to be in set S′ with b∗(S′) = 0. With this in
mind, the summation can be maximized by a valid outcome
X ∗ such that all items are included in the outcome.

Definition 2.1.1. An exhaustive valid outcome is a valid
outcome where every item is included in exactly one subset
of the outcome.



A solution to the WDP using the integer programming
solution is an exhaustive valid outcome that maximizes the
summation of bids on the subsets of that outcome.

2.1.1 Bid Graphs
Here we briefly define a bid graph and how such a graph is

constructed. Put simply, each vertex in a bid graph is a bid,
and an edge exists between two vertices if the two bids they
represent share an item. Recall that N is our set of agents,
and M our set of items. We denote the bid for agent i as Vi,
which consists of atomic bids (Si1, pi1), . . . (Siri , piri) where
Sij ⊆ M and pij > 0. For each agent i, we define ri to be
the number of atomic bids in Vi and let Mi represent the to-
tal number of items used over all atomic bids, counting each
item exactly once. Lastly, we let R represent the number
of distinct atomic bids across all Vi; we distinguish between
two atomic bids by their item bundles. Equivalently, R rep-
resents the number of distinct subsets of items S ⊆ M that
have at least one atomic bid placed by an agent.

By definition, a bid graph is the intersection graph of the
distinct atomic bids. We consider the vertices of the bid
graph to each have label {i, S, p}, where S ⊆ M is a bundle
of items, and p > 0 denotes the highest bid value for that
bundle by agent i. We note that p = b∗(S) for bundle S.
See Figure 1 for an example bid graph. The WDP is equiva-
lent to finding a maximum weighted independent set on the
constructed graph [12]. Sandholm et al. have shown that
the bid graph can be constructed in polynomial-time, and
in fact it can be constructed in time that is O(n · R2 · m2)
[12, 13]. It is also well known that we can translate to a
CA from a bid graph in polyomial time. For the purposes of
this paper, we will analyze the bid graph and consider the
ramifications of parameterizing this graph and its associated
CA.

Figure 1: An example of a bid graph represent-
ing a CA. The CA consists of 4 agents, 5 items
{A,B,C,D, E}, and 7 distinct atomic bids.

2.2 Parameterized Complexity
The winner determination problem for the general combi-

natorial auction is NP-complete [11]. Even though it is NP-
complete, we must research its potential solutions because
in practice, some solution is required. There are a number
of different approaches to analyzing NP-hard problems, one
of which is parameterized complexity theory.

Parameterized complexity theory and the notion of fixed-
parameter tractability were developed by Downey and Fel-

lows to further classify intractable problems [6]. By relaxing
the requirement that an algorithm runs in polynomial time,
the theory allows the running time to be large in terms of
one or more parameters, provided that it is polynomial with
respect to the input size. The goal is to design algorithms
that run efficiently if the parameters are sufficiently small,
regardless of the size of the input. If such an algorithm ex-
ists, the problem it solves is called fixed-parameter tractable
(FPT). We now give an overview of the fundamental con-
cepts behind parameterized complexity.

Definition 2.2.1 ([6]). A parameterized problem is a
language L ⊆ Σ∗ × Γ∗, where alphabets Σ and Γ are finite.
For each (x, y) ∈ L, we call x the input and y the parameter.

Many computation and optimization problems that are
known to be NP-complete may be represented as parameter-
ized problems in order to obtain new algorithms or complex-
ity results. Often the parameter y is taken to be a positive
integer and denoted instead as k. By separating the problem
input into two parts, we hope to find an algorithm that has
“good” running time as a function of |x|, while allowing for
arbitrarily“bad”running time as a function of |y|. This leads
to the formal notion of fixed-parameter tractability, which is
central to parameterized complexity in the same way that
polynomial time is central to classical computational com-
plexity.

Definition 2.2.2 ([6]). A parameterized problem L is
fixed-parameter tractable (FPT) if there exists an algorithm
that, given input (x, y) ∈ Σ∗ × Γ∗, can correctly determine
if (x, y) ∈ L using time f(|y|) · p(|x|) for some computable
function f and polynomial p.

Fixed-parameter tractability generalizes polynomial time
computability by admitting algorithms whose running time
is exponential, but only with respect to the parameter. For
some combinatorial problems, there are proofs of fixed-
parameter intractability. However, as with the classical no-
tion of intractability, to demonstrate fixed-parameter in-
tractability for most interesting natural problems, we will
need to make use of completeness theory. More precisely, we
need to define what it means for one parameterized problem
to be reducible to another. Conceptually, we wish to take a
parameterized problem instance and find a mapping to the
other parameterized problem instance such that an input
is accepted in the first language if and only if the mapped
input is in the second language. This mapping algorithm
must be fixed-parameter tractable and the part of the map-
ping that calculates the second problem’s parameter must be
a function of only the first problem’s parameter. Formally,
we have the following definition:

Definition 2.2.3 ([6]). Let L ⊆ Σ∗ × Γ∗ and L′ ⊆
(Σ′)∗ × (Γ′)∗ be parameterized problems. We say that L is
fixed-parameter reducible to L′ (L ≤fpt L′) if there is a
mapping F : Σ∗ × Γ 7→ (Σ′)∗ × (Γ′)∗ such that

1. For all (x, y) ∈ Σ∗ × Γ∗, (x, y) ∈ L if and only if
F (x, y) ∈ L′,

2. F is computable in time f(|y|) · p(|x|), for some com-
putable function f and polynomial p, and

3. For all (x, y) ∈ Σ∗ × Γ∗ where F (x, y) = (x′, y′), we
have |y′| ≤ g(|y|) for some computable function g.



We now have the tools and definitions to perform fixed-
parameter reductions. In Section 2.2.1, we will see two prob-
lems that are unlikely to be FPT. These problems are known
as W [1]-hard, and are believed to be fixed-parameter in-
tractable [6]. Later, we show that some parameterizations of
the WDP are also fixed-parameter intractable by providing
fixed-parameter reductions using a problem in Section 2.2.1.
The notions of FPT and W [1] are similar to that of P and
NP , and for the purposes of this paper we will not delve fur-
ther into the many other parameterized complexity classes,
but instead refer the reader to Downey and Fellows for a
complete description [6].

It is important to know if a parameterization of the WDP
is W [1]-hard because, as we will see in later sections, W [1]-
hardness implies that our parameterization does not provide
a significant improvement in the running time of a solution
to the WDP. Knowing which restrictions not to make is
often just as important as making ones that lead to fixed-
parameter tractability. For further details about the hierar-
chy and its definition, see Downey and Fellows [6]. For the
classification of various parameterized problems see Cesati
[3].

2.2.1 Two Important Parameterized Problems
For our proofs of fixed-parameter intractability, we will

need to reduce from known fixed-parameter intractable prob-
lems. For this reason, we introduce two problems that are
both known to be W [1]-complete [6].
k-WEIGHTED INDEPENDENT SET
Input: A graph G = (V,E), together with function

ω : V 7→ Z, ω(v) > 0 for all v ∈ V .
Parameter: Positive integer k.
Question: Does there exist a set of vertices V ′ ⊆ V

such that for all u, v ∈ V ′, {u, v} 6∈ E, and
∑

v∈V ′(ω(v) ≥ k?

k-WEIGHTED SET PACKING
Input: A finite family of sets S = S1, . . . , Sq along

with their weights W = W1, . . . ,Wn, Wi > 0
and Wi ∈ Z for all i.

Parameter: Positive integer k.
Question: Does S contain a sub-family F of mutually

disjoint sets such that the sum of their corre-
sponding weights is at least k?

Lemma 2.2.4 ([6]). k-WEIGHTED INDEPENDENT SET
and k-WEIGHTED SET PACKING are both W [1]-complete.

3. PARAMETERIZATION
The winner determination problem on the constructed bid

graph is equivalent to finding its maximum weighted inde-
pendent set. In order to parameterize the problem we need
to consider what factors may affect the running time of a so-
lution. Given the construction and nature of the WDP, we
need to either restrict the number of vertices, the number of
edges, or enforce some structure on the graph itself. There
are many ways to accomplish this but only some restrictions
will lead to fixed-parameter tractable algorithms.

For parameterizing the problem, we can restrict any com-
bination of the problem’s parameters. The number of items,
number of agents, number of atomic bids, and the number
times bids of different agents intersect are just some of the
possible parameters. We will consider a few of these pa-
rameters and also look at restricting the graph class of our

bid graph. We begin with a simple parameterization of the
WDP and show it is W [1]-complete.

In the following example, the parameter acts as a lower
bound on the sum of the winning bids. As we show below,
this parameterization is W [1]-complete.
k-WINNER DETERMINATION (k-WD)
Input: A set of agents N , items M , and bids V =

V1, V2, . . . Vn.
Parameter: Positive integer k.
Question: Does there exist a set of mutually disjoint

atomic bids {(S1, p1), (S2, p2), . . . , (S`, p`)}

such that
∑`

j=1
(pj) ≥ k?

Proposition 3.0.5. k-WD is W [1]-complete.

Proof. We begin by providing a fixed-parameter reduc-
tion from k′-WEIGHTED INDEPENDENT SET to k-WD.
Given an arbitrary graph as input to k′-WEIGHTED INDE-
PENDENT SET, we construct a combinatorial auction with
one agent. We number the edges of the graph as 1, 2 . . .m.
For each vertex v, we create an atomic bid (Sv, pv), where
Sv = { edge numbers incident with v}, and pv is the weight
of vertex v in the k′-WEIGHTED INDEPENDENT SET
problem. Further, we set the parameter k = k′.

Finding mutually disjoint atomic bids is then equivalent to
finding an independent set, hence the sum of the bid prices
is equivalent to the sum of the independent set’s vertices’
corresponding weights. Therefore, if we have an independent
set of weight at least k′ then we also have mutually disjoint
atomic bids whose prices sum to at least k, by construction.
The reduction is a fixed-parameter reduction and so we have
that k-WD is W [1]-hard.

In Section 2.1.1, we have seen that k-WD can be used to
construct a bid graph in polynomial time. As the WDP is
equivalent to finding a maximum weighted independent set
on the bid graph, it follows directly that by restricting our
attention to k-WD we only need to find an independent set
of size at least k′ = k. Therefore, k-WD is in W [1] and
hence is W [1]-complete.

3.1 Parameterizing the Auction
We will now demonstrate some of the ways one can pa-

rameterize the WDP and the effect, if any, each parameter-
ization has on its complexity. There are many choices to be
made and the ones we make are by no means exhaustive;
there may be many other parameterizations for which the
problem remains hard, and others that demonstrate fixed-
parameter tractability. We begin our parameterizations by
considering the number of distinct atomic bids in a CA.

The number of vertices in the bid graph is exactly the
number of distinct atomic bids across all agents, R. A sim-
plistic algorithm would search through every possible com-
bination of vertices to try and find the maximum weighted
independent set. The number of edges is bounded above by
(

R

2

)

, and so such a naive algorithm would require time of

at most O(R2 · 2R). What is interesting here is that the
number of items does not affect the result at all. Recalling
that O(n · R2 · m2) was our bid graph construction time,
the total required time to find a solution to the WDP is
O(n ·R2 ·m2 +R2 · 2R). This leads to the following param-
eterization:
R, k-WINNER DETERMINATION (R, k-WD)



Input: Agents N , items M , and bids V =
V1, V2, . . . Vn, where the total number of dis-
tinct atomic bids across all Vi is at most R.

Parameter: Positive integers R, k.
Question: Does there exist a set of mu-

tually disjoint atomic bids
{(Si1 , pi1), (Si2 , pi2), . . . , (Si` , pi`)} such

that
∑`

j=1
(pij ) ≥ k?

From the above, R, k-WD is fixed-parameter tractable,
since we can find the maximum weighed independent set
and then verify that its value is at least k. By noticing that
we really only require checking all possible combinations of
up to and including m sets of R atomic bids we can come
up with a possibly better bound if m ≤ 1

2
R. By checking

(

R

1

)

+
(

R

2

)

+ . . .+
(

R

m

)

sets of atomic bids we have included
every possible item and if a maximum choice exists we must
have already seen it. For each set we need to check if any of
at most

(

m

2

)

edges exist among the chosen atomic bids. The

algorithm then runs in time O(n ·R2 ·m2+m2 · (
(

R

1

)

+
(

R

2

)

+

. . .+
(

R

m

)

)) ∈ O(n ·R2 ·m2+m3 ·( R
m
)m), for m ≤ 1

2
R. If m >

1

2
R, the new method is still faster than trying all 2R possible

combinations of atomic bids, but the order notation does not
simplify as easily. Further, since we have the parameter k,
it is possible to check even fewer combinations. However,
we will not analyze the exact running time of the algorithm
making use of the parameter.

A practical problem arises from this parameterization as
the seller has no direct control over the total number of
atomic bids. Further, without additional restrictions on
n, the seller cannot possibly specify a restriction per agent
based on knowledge of a bound on R.

Consider another view: parameterize the number of atomic
bids per agent i as B. This parameterization results in a
maximum value for R of n · B, and thus the required run-
ning time for our naive algorithm becomes O(n3 ·B2 ·m2 +
(n ·B)2 ·2n·B). The naive algorithm is now exponential in n,
which is not a parameter. However, it requires formal justifi-
cation to show that this parameterization is fixed-parameter
intractable.
B, k-WINNER DETERMINATION (B, k-WD)
Input: Agents N , items M , and bids V =

V1, V2, . . . Vn, where the number of atomic
bids in any Vi is at most B.

Parameter: Positive integers B, k.
Question: Does there exist a set of mu-

tually disjoint atomic bids
{(Si1 , pi1), (Si2 , pi2), . . . , (Si` , pi`)} such

that
∑`

j=1
(pij ) ≥ k?

Proposition 3.1.1. B, k-WD is W [1]-hard.

Proof. We perform a fixed-parameter reduction from k′-
WEIGHTED SET PACKING to B, k-WD. Our family of
sets is S = S1, S2, . . . , Sq and from these we create a com-
binatorial auction with q agents. Subset Si will be used to
create an atomic bid (Si,Wi) for agent i, 1 ≤ i ≤ q. The
result is a B, k-WD problem, with B = 1, and k = k′. Fur-
ther, we have a set of mutually disjoint atomic bids whose
bid price sum is at least k for B, k-WD if and only if the origi-
nal k′-WEIGHTED SET PACKING problem has a family of
mutually disjoint sets whose sum of their associated weights
is also at least k′.

It then follows that parameterizing by the number of atomic

bids per agent is not worthwhile, as the problem remains
hard. However, if we parameterize the number of atomic
bids per agent and the number of agents we can achieve
fixed-parameter tractability because even our naive algo-
rithm was exponential only in n and B. In real-world appli-
cations, enforcing this parameterization is likely more fea-
sible than parameterizing the total number of atomic bids
over all agents.

3.1.1 “Single-Minded” Agents
An often studied special case of CAs restricts agents to

bidding on at most a single bundle of items. In the literature
the agents are referred to as“single-minded”when faced with
this restriction. Due to the significance of this special case,
we should note that Proposition 3.1.1 gives us a proof of the
hardness when agents are “single-minded”. In fact, the case
is equivalent to forcing the value of B to 1.

Proposition 3.1.1 states that B, k-WD is W [1]-hard, but
more importantly, since our proof of this proposition is for
the case where B = 1, it is exactly the case where agents
are “single-minded”. Thus, even if each agent is “single-
minded”, solving the winner determination problem for the
resulting combinatorial auction is just as hard as solving it
in the general case. We can conclude that for combinatorial
auctions, the auction designer does not gain any simplicity
from restricting agents in such a way, and given that it is
a severe restriction from the point of view of the agent, it
serves no purpose in this case. For a further and more in-
depth discussion of single-minded agents, we refer the reader
to Lehmann et al [8].

3.2 Restricting the Graph Class
As an additional avenue of investigation, we consider what

happens if we restrict agents to certain types of bids. That
is, we restrict each agent to bidding such that the bid graph
of the agent’s bids maintains a desired structure. The ques-
tion we then ask is how this structure affects the hardness
of the overall combinatorial auction; is the WDP for the
auction fixed-parameter tractable, or does it remain W [1]-
hard? It is important to note that while we are restricting
the agents’ bids for proof of fixed-parameter tractability, we
are not necessarily proposing that the agents be restricted
in practice; rather, we are investigating which structures do,
and which do not reduce the complexity of the problem. We
will comment further on this at the end of this section.

First we present a general problem definition, in which we
restrict our problem using β and parameterize by k, where
β is some desired graph class. We require that the graph
class of each agent i’s bid graph be a graph from class β.
The parameter k will be used in the typical way we have
seen previously.
β, k-WINNER DETERMINATION (β, k-WD)
Input: A set of agents N , items M , and bids

V = V1, V2, . . . Vn, where the bid graph
generated by Vi belongs to graph class β.

Graph Class: β.
Parameter: Positive integer k.
Question: Does there exist a set of mu-

tually disjoint atomic bids
{(Si1 , pi1), (Si2 , pi2), . . . , (Si` , pi`)} such

that
∑`

j=1
(pij ) ≥ k?

Analyzing the general problem is of course very difficult.
We cannot immediately generalize all graph classes and give



one result. First we introduce two well-known graph classes,
interval and chordal graphs, and then consider the β, k-WD
problem where β is restricted to one of these classes.

Definition 3.2.1 (Interval graph). Let I1, I2, . . . , In
be intervals on the real line. Then, we define the interval
graph G = (V, E) representing the intervals I1, . . . , In as
follows:

V = {I1, I2, . . . , In}, and

{Ii, Ij} ∈ E ⇐⇒ Ii ∩ Ij 6= ∅.

Definition 3.2.2 (Chordal graph). A graph G is a
chordal graph if and only if for any cycle C in G containing
at least four vertices there exists an edge between two vertices
in C that is not part of the cycle.

Rothkopf et al. discussed a combinatorial auction where
the items can be ordered and it is required that bids be
placed on consecutive items [11]. While Rothkopf et al. [11]
did not make use of interval graphs directly, they were actu-
ally specifying that the agents’ bid graphs be interval graphs
of one common interval. By definition, the bid graph of the
resulting CA is also an interval graph. Thus, we have the
following proposition.

Proposition 3.2.3 ([11]). If β is the class of interval
graphs defined by interval I = (1, 2, . . . ,m), the β, k-WD
problem is fixed-parameter tractable.

Rothkopf et al. showed that for interval graphs, the β, k-
WD problem can be solved in linear time. It is not always
possible to restrict β and result in a CA that is easier to
solve. A good illustration of this is for β as the class of
chordal graphs.

Proposition 3.2.4. If β is the class of chordal graphs,
the β, k-WD problem is W [1]-hard.

It is important we note that in the proof of Proposi-
tion 3.2.4, we reduce from an arbitrary instance of a CA and
its bid graph. This is valid because chordal graphs place no
restrictions on how different agents’ bids intersect.

Proof Proof of Proposition 3.2.4. In order to show
that this problem remains W [1]-hard we give a fixed-
parameter reduction from k′-WD to β, k-WD. Given an ar-
bitrary instance of a CA and its bid graph G = (V,E), we
construct a new CA where each agent’s individual bid graph
belongs to the class of chordal graphs. We let the number
of agents in our new CA, n, be the same as the number of
vertices of G, and consider each vertex in G to belong to
a distinct agent. Each agent’s bid in the new CA consists
of a single atomic bid involving only the labels of the edges
adjacent to the agent’s corresponding vertex in G. A graph
of one vertex belongs to the class of chordal graphs, and as
such every agent’s individual bid graph also belongs to the
class of chordal graphs. Thus, we have constructed a new
CA with n = |V | agents, each of which places exactly one
atomic bid. This reduction requires time polynomial in the
size of the original CA to complete, and finally we note that
k = k′.

Given that we cannot restrict β as the class of chordal
graphs, a natural question to ask is for which graph classes

the β, k-WD problem remains W [1]-hard. We will provide a
partial characterization, but first, we need to define what it
is to be a minimal β graph. We choose to quantify the size
of a graph by the sum of the number of vertices and edges
in the graph.

Definition 3.2.5 (minimal β graph). A minimal β
graph is a graph contained in graph class β whose size is at
most the size of any other graph from graph class β.

Intuitively, it is a graph from graph class β whose size
is minimal. It is possible for a minimal β graph to have
infinite size, and so our first restriction is that β have a min-
imal β graph of finite, constant size. Further, we require
that β imposes no restriction on the interaction between the
atomic bids of different agents. We will show that under
these restrictions, the resulting β, k-WD problem remains
W [1]-hard. The idea is that the minimal β graph has finite,
constant size, and thus has a maximum weighted indepen-
dent set that can be determined in constant time.

Theorem 3.2.6. If β has a minimal β graph of finite,
constant size and imposes no restriction on the interaction
between the atomic bids of different agents, then the resulting
β, k-WD problem is W [1]-hard. A minimal β graph repre-
sentation is given as Gβ, and does not need to be discovered.

Proof. To show that β, k-WD is W [1]-hard, we reduce
from k′-WD. Given an instance of k′-WD, we consider its bid
graph G. We aim to construct a bid graph G′ that represents
a β, k-WD problem. For this, we consider each vertex in G

to be a distinct agent for our new problem. We now have
a single atomic bid per agent, but an agent’s individual bid
graph is not necessarily a valid β graph. To remedy this, we
replace each vertex in G′ with a copy of Gβ. Further, we
assign to each vertex in the copy of Gβ a weight equal to that
of the weight of the original single vertex it replaced from
G. Each agent in our new problem is now associated with
exactly one distinct minimal β graph in G′, and exactly one
distinct vertex in G. If two vertices v1, v2 were adjacent in
G, then every vertex in agent v1’s minimal β graph must be
made adjacent to every other vertex in agent v2’s minimal β
graph in G′. We describe this as agent v1’s minimal β graph
being adjacent to agent v2’s minimal β graph.

G′ now represents a new CA where the number of agents
is equal to the number of vertices of the original graph, and
each agent has an individual bid graph that is a copy of the
minimal β graph Gβ , where each atomic bid has the same
weight. We denote the size of a maximum independent set
for Gβ as Iβ. Note that since the vertices’ weights are all
equal in each agent’s bid graph, Iβ must consist of the same
number of vertices as would a maximum weighted indepen-
dent set for each bid graph. Further, Iβ can be found in con-
stant time because Gβ is of constant size, which is necessary
for the reduction to remain a fixed-parameter reduction.

Assume G has an independent set IG of weight at least
k′, and denote the vertices of IG as v1, v2, . . . , v`. The ver-
tices of IG map to ` distinct agents in our new CA, each
with a bid graph that is a copy of Gβ. Originally, each
vertex vi ∈ IG contributed weight pi, which represents the
price bid on the set of items associated with vi in G. For
of our new CA, we construct an independent set IG′ from
G′. For each agent, we add the vertices associated with Iβ
from the agent’s copy of Gβ in G′ to our independent set



IG′ . These maximum independent sets contribute a total
weight of

∑`

i=1
Iβ · pi = Iβ · k′. By construction, IG′ is an

independent set and therefore we have an independent set
in our new bid graph of weight at least k = Iβ · k′.

Now we will show that if G′ contains an independent set
IG′ of weight at least k = Iβ · k′, then the original graph
contains an independent set of weight at least k′. Consider
only a single vertex in G′ from each copy of Gβ that has
a vertex in IG′ , and denote this set of vertices as IG. As
Iβ is maximal by definition, we have that the vertices of IG
must have a weight of at least k′ from our assumption that
k = Iβ ·k′. Further, each vertex of IG maps directly back to
a distinct vertex in the original graph, G, and we denote this
set as I∗G. Since the edge adjacencies of G were preserved in
our construction, the agents’ minimal β graphs are adjacent
to each other in G′ if and only if the agents’ corresponding
vertices were adjacent to each other in G. Therefore, I∗G is
an independent set of G of weight at least k′.

Finally, the construction of G′ is simply a multiplication of
the size of the minimal β graph, which is a constant, and the
size of the original graph G. Hence, it is a fixed-parameter
reduction from k′-WD to β, k-WD and therefore β, k-WD is
W [1]-hard.

As a final note on the construction of G′ in our proof of
Theorem 3.2.6, both stipulations stated in the Theorem are
necessary. Our assumption in the beginning of the proof
was that we were given an arbitrary instance of k′-WD, and
hence for G′ to be a valid bid graph of an instance of β, k-
WD we must allow arbitrary interactions between different
agents’ minimal β graphs. Further, it was clearly stated
in the proof where a minimal β graph of finite, constant,
size becomes necessary for the reduction to remain a fixed-
parameter reduction.

With Theorem 3.2.6, we have a partial characterization of
our β, k-WD problem where we have outlined special cases
for which the problem remains fixed-parameter intractable.
We have also shown that when β is the class of interval
graphs defined by the interval I = (1, 2, . . . , m), then β, k-
WD is fixed-parameter tractable; in fact it can be solved in
polynomial time. In the case of interval graphs, a maximum
independent set could be found for the bid graph in linear
time.

In the investigation of combinatorial auctions as they ap-
ply to specific economic areas, one may find that agents tend
to bid such that their individual bid graphs belong to a par-
ticular graph class. If this is the case, it is natural for a seller
to consider restricting all agents to bid in this manner in ex-
change for a faster solution to the WDP. From our work in
the section, we now have an example where finding said par-
ticular graph class is useful information, and a few examples
where it is not. Should β, k-WD remain fixed-parameter in-
tractable when restricted to β, it is useless for the seller to
restrict agents to bid graphs belonging to graph class β.

As a final example of a fixed-parameter reduction, we in-
vestigate the WDP when the CA’s bid graph is a graph such
that the number of vertices in each disconnected component
is bounded from above.

3.2.1 Disconnected Components of Bounded Vertices
We previously restricted each agent’s bid graph, and then

evaluated the parameterized complexity of β, k-WD.We now
restrict the CA’s bid graph to a graph of disconnected com-
ponents of bounded vertices. More precisely, the number of

vertices in each component will be bounded from above. In
the end of this section, we show how this can be achieved.
Consider a CA’s bid graph, G, and denote C1, C2, . . . , Cq as
the disconnected components of G. By our construction in
Section 2.1.1, every vertex of G represents a distinct atomic
bid on a bundle of items, and hence there are at most R com-
ponents. As the components are disconnected, to solve the
WDP we must find a maximum weighted independent set for
each of the components. We omit the proof of Lemma 3.2.7
due to lack of space, though it follows easily.

Lemma 3.2.7. A maximum weighted independent set of a
graph G has the same weight as the union of a maximum
weighted independent set from each disconnected component
of G. Let I denote any particular maximum weighted in-
dependent set of G, and let W (I) denote its weight. Fur-
ther, let IU denote the union of maximum weighted indepen-
dent sets, one for each disconnected component of G, and
let W (IU) denote the combined weight of all vertices in IU .
Then W (I) = W (IU).

C-Component `, k-WINNER DETERMINATION
(C, `, k-WD)
Input: A set of agents N , items M , and bids

V = V1, V2, . . . Vn, where the bid graph
generated by V is a disconnected graph of
C components, each of which have at most
` vertices.

Graph Class: C disconnected components, each of which
have at most ` vertices.

Parameter: Positive integers k, `.
Question: Does there exist a set of mu-

tually disjoint atomic bids
{(Si1 , pi1), (Si2 , pi2), . . . , (Si` , pi`)} such

that
∑`

j=1
(pij ) ≥ k?

Note that C is not a parameter, but rather a variable that
is bounded above by R.

Proposition 3.2.8. C, `, k-WD is fixed-parameter
tractable.

Proof. Using our result from R, k-WD in Section 3.1,
we break down the decision problem into components. The
number of vertices in each component is bounded from above,
and thus a maximum weighted independent set can be found
for each component separately, requiring running time O(`2 ·
2`). As was discussed in Section 3.1, this running time can
be improved slightly with various techniques that can also
be applied here. Lemma 3.2.7 states that we can combine
the vertices from each component’s maximum weighted in-
dependent set to form a maximum weighted independent
set for the entire bid graph. It follows that the required
running time of a solution to the WDP on a CA where
the bid graph G is such that the vertices in each discon-
nected component of G are bounded from above by `, is
O(n ·R2 ·m2 + C · `2 · 2`).

To apply this parameterization in practice, the seller must
enforce a global restriction resulting in a bid graph of C

disconnected components, each having a bounded number
of vertices. There are at least two ways of accomplishing
this. First, recognizing the structure of such a bid graph
can be accomplished in polynomial time. In particular, the
seller may construct the bid graph and then determine if



it is a graph of C disconnected components, each of which
have at most ` vertices. If the graph follows the necessary
restrictions, then we can solve the problem.

As an alternate method, if it is feasible to do so then the
seller may separate items into groups of bounded size, and
no agent may place items from different groups in the same
atomic bid. By separating items into groups of size at most
`′, we divide the m items into dm

`′
e groups of size at most

`′. Agents must be instructed that none of their atomic bids
may include items from more than one group. With this
restriction we have bounded the number of possible bids per

group to at most 2`
′

. By setting ` = 2`
′

, we have constructed
a valid instance of C, `, k-WD, where k still needs to be set.

4. CONCLUSIONS
Combinatorial auctions (CAs) are important and very use-

ful for allocating items to agents who wish to communicate
preferences over bundles of items. Finding a solution to the
winner determination problem (WDP) is NP-complete in the
general case, and it is also equally difficult to find approx-
imate solutions. Under special circumstances that enforce
structure on the CA, the WDP can become easier to solve.
In this paper, we made use of a new approach to analyzing
the complexity of structured versions of the WDP. By using
parameterized complexity theory, we formulated parameter-
izations of the WDP and show when these parameterized
problems result in fixed-parameter intractable algorithms.
Further, in four of our parameterizations of the WDP, we
demonstrated fixed-parameter tractability.

For our main result, we restricted graph class β such that
the resulting β, k-WD problem remained W [1]-hard. More
precisely, if β has a minimal β graph of finite, constant size
and imposes no restriction on the interaction between the
atomic bids of different agents, then the resulting β, k-WD
problem is W [1]-hard. This restriction of β is lax enough to
allow many different graph classes. It is useful because in the
investigation of CAs as they apply to specific economic areas,
one may find structure in the bid graphs of individual agents.
We show a number of these structures that do not reduce
the complexity of the WDP. Knowing which structures are
not helpful is often just as important as finding ones that
lead to fixed-parameter tractability.

Our results are of particular relevance to auction designers
since they provide information as to what types of bidding-
restrictions are effective for simplifying the winner determi-
nation problem, and which would simply limit the expres-
siveness of the agents while not providing any additional
computational gains. For example, considering “single-
minded” agents in the context of combinatorial auctions
yields no computational benefits even though it restricts
each agent to only a single bid. With each negative result,
we find ourselves closer to a more complete characterization
of the WDP for CAs and gives a deeper insight into what
makes the problem difficult.

The main contribution of this paper is its demonstration
of the use of parameterized complexity in the investigation
of the WDP for CAs. With parameterized complexity the-
ory, it is possible to parameterize the WDP and discover
new, more efficient algorithms, and prove when parameter-
izations are as hard as any solution to the general-case the
WDP. We hope that this methodology will inspire additional
questions and ideas that lead to improved ways of solving
and structuring the WDP for CAs.
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