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ABSTRACT
Combinatorial auctions (CAs) are an important mechanism
for allocating multiple goods while allowing self-interested
agents to specify preferences over bundles of items. Win-
ner determination for a CA is known to be NP-complete.
However, restricting the problem can allow us to solve win-
ner determination in polynomial time. These restrictions
sometimes apply to the CA’s representation. There are two
commonly studied, and structurally different graph repre-
sentations of a CA: bid graphs and item graphs. We study
the relationship between these two representations.

We show that for a given combinatorial auction, if a graph
with maximum cycle length three is a valid item graph for
the auction, then its bid graph representation is a chordal
graph. Next, we present a new technique for constructing
item graphs using a novel definition of equivalence among
combinatorial auctions. The solution to theWDP for a given
CA can easily be translated to a solution on an equivalent
CA. We use our technique to simplify item graphs, and show
that if a CA’s bid graph is chordal, then there exists an
equivalent CA with a valid item graph of treewidth one, for
which a solution to the WDP is known to be efficient. This
result demonstrates how CA equivalence can simplify the
structure of item graphs and lead to more efficient solutions
to the WDP, which are also a solutions to the WDP for the
original auctions.
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I.2 [Artificial Intelligence]: Miscellaneous—combinatorial
auctions
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Theory and Design
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Auctions are used throughout today’s economy to allocate
goods, resources, and services to agents, and there are nu-
merous investigations into auction design [10, 5, 8, 11, 9].
The process of determining the allocation of items is known
as the winner determination problem (WDP) [1, 4].

We consider a type of auction where multiple items are
sold. An agent’s value for a bundle may not always be the
sum of the agent’s value for each individual item in that
bundle. We ideally would want a mechanism that allows
agents to group items together into a single bid; combi-
natorial auctions (CAs) allow us to model this behaviour
[4]. Solving WDP for the general CA is NP-complete [10].
However, certain restrictions can allow us to solve WDP in
polynomial time. These restrictions sometimes apply to the
represenations of the combinatorial auctions [12, 2, 7].

Two common representations of CAs are bid graphs and
item graphs. A bid graph is a graph in which each vertex
represents a single atomic bid and is labeled with the highest
bid for its bundle of items. Two vertices are adjacent in a
bid graph if and only if they have an item in common. A
valid item graph of the CA is a graph where the bids induce
connected subgraphs. There have been many investigations
into solving WDP using both item graphs and bid graphs
[10, 11, 12, 4, 2, 9, 3, 7]. In particular, when the item graph
of a CA has bounded treewidth, WDP is polynomial [2].

Despite the fact that item graphs and bid graphs repre-
sent the same underlying auctions, there is a stark contrast
between the two. By better understanding the relationships
between item graphs and bid graphs, we may be able to cre-
ate more efficient algorithms for solving WDP and, as we
will see, find a new way of looking at CAs in general. There
is little previous work on the relationships between these two
graph representations. The only such results we are aware
of are by Sandholm and Suri, who observe that if a path
is a valid item graph for a given CA, then the bid graph
representation of the auction is an interval graph [12]. As a
corollary, they point out that if a cycle is a valid item graph,
then the bid graph is a circular arc graph [12].

We present an indepth study of relationships between these
two representations. For our first result, we present a new
relationship between item graphs and bid graphs for fixed
combinatorial auctions. In our second result, we obtain a
stronger relationship under our novel notion of equivalence
between combinatorial auctions.

In our first result, we find that if there exists a valid item
graph representing a CA such that the maximum length of
any cycle in the graph is three, then the bid graph for the
auction is chordal. We show that the result does not extend



to cycles of length four or item graphs of treewidth two.
Further, the converse does not hold. This impass lead to
our next avenue of investigation: modifying combinatorial
auctions.

The motivation behind studying the modification of CAs
begins with the fact that item graphs are hard to construct.
As shown by Conitzer et al., constructing a valid item graph
with the fewest edges is NP-complete [2]. Given a CA,
Conitzer et al. construct a valid item graph of treewidth
one in polynomial time, if the graph exists [2]. However,
as shown by Gottlob and Greco, it is NP-hard to decide
whether or not a combinatorial auction has a valid item
graph of treewidth three [7]. On the other hand, bid graphs
can always be constructed in polynomial time.

Throughout the literature, it is assumed that a CA is fixed
before the construction of a valid item graph. We take a
novel perspective by modifying the CA in order to achieve
a valid item graph of smaller treewidth, where the solution
to the WDP for the modified CA can easily be mapped to a
solution for the original CA. We define equivalence among
CAs, and derive a new method for constructing valid item
graphs of bounded treewidth.

Intuitively, two bids graphs are equivalent if they are iso-
morphic, and two CAs are equivalent if their bid graphs
are equivalent. Using our notion of CA equivalence, we then
prove that if a bid graph of a CA is chordal, then there exists
an equivalent CA that has a tree as a valid item graph. The
item graph for the equivalent CA can be found in polynomial
time, given the bid graph of the original auction. With our
notion of CA equivalence, if the bid graph is chordal, then
even if the smallest treewidth for the item graph is arbitrar-
ily larger than one, there still exists an equivalent auction
with a tree as a valid item graph. Further, a solution to the
WDP found using the item graph of treewidth one gives us
a solution to the original, equivalent auction.

Understanding the relationship between bid graphs and
item graphs is a very important step to better understand-
ing combinatorial auctions and what makes the problem dif-
ficult to solve. Such an understanding may lead to new ap-
proaches to constructing item graphs and better algorithms
for solving restricted instances of the WDP for CAs.

Here is an outline of the paper. First, we formally define
combinatorial auctions, the winner determination problem,
bid graphs and item graphs. Next, we present a relationship
between item graphs and bid graphs where the combina-
torial auction is fixed, and describe some limitations that
result from fixing the auction. We then present our novel
definition of combinatorial auction equivalence. We then
use CA equivalence to show that if the bid graph of a CA is
chordal, then there exists an equivalent auction that has a
tree as a valid item graph. We finish with conclusions and
some open problems.

2. PRELIMINARIES

2.1 Combinatorial Auctions
A CA consists of a set of n agents, and m items to be auc-

tioned. The set of agents will be denoted byN = {1, 2, . . . , n}
and the set of items byM . For any subset S ⊆ M , any agent
i can place a bid bi(S) ∈ Z on S. We assume that bi(S) ≥ 0
for all S ⊆ M and that the agents are self-interested.

Sandholm notes that only the highest bid for each bundle
needs to be considered in order to solve winner determina-

tion [11]. Thus, define b∗(S) as follows:

b
∗(S) = max

i∈N
bi(S)

An atomic bid, denoted (S, p), includes a set of items
S ⊆ M and its bid value, p ≥ 0. We assume that for
each agent i, bids are submitted as a set of atomic bids,
{(Si1, pi1), . . . , (Siri , piri)}.

Calculating the allocation of goods to agents can be done
by solving an integer program, which is NP-hard. We define
a valid outcome X = {S1, S2, . . . , Sl} as a set of bundles
of items, where Sj ⊆ M , |Sj | ≥ 1 for all j and for every
Sj , Sk ∈ X , j 6= k, we have Sj ∩ Sk = ∅. The solution to the
winner determination problem is the following:

max
X

∑

S∈X

b
∗(S)

where X is a valid outcome. It finds a set of disjoint subsets
of M that maximizes the sum of the bids. Note that some
items may not be included in any of the subsets S ∈ X and a
valid outcome does not explicitly state who wins each of the
subsets. However, this can be determined by giving every
bundle S ∈ X to the agent who placed the highest bid for
S.

Any items that are not included in a valid outcome we
will consider to be in set S′ with b∗(S′) = 0. With this in
mind, the summation can be maximized by a valid outcome
X ∗ such that all items are included in the outcome.

An exhaustive valid outcome is a valid outcome where ev-
ery item is included in exactly one subset of the outcome. A
solution to WDP using the integer programming solution is
an exhaustive valid outcome that maximizes the summation
of bids on the subsets of that outcome.

2.2 Bid Graphs and Item Graphs
In this section, we first briefly define bid graphs, followed

by item graphs. Put simply, each vertex in a bid graph is a
bid, and an edge exists between two vertices if the two bids
they represent share an item. Recall that N is our set of
agents, and M our set of items. We denote the bid for agent
i as Vi, which consists of atomic bids (Si1, pi1), . . . (Siri , piri)
where Sij ⊆ M and pij ≥ 0. For each agent i, we define ri
to be the number of atomic bids in Vi and let Mi represent
the total number of items used over all atomic bids, count-
ing each item exactly once. Lastly, we let R represent the
number of distinct atomic bids across all Vi; we distinguish
between two atomic bids by their item bundles. Equiva-
lently, R represents the number of distinct subsets of items
S ⊆ M that have at least one atomic bid placed by an agent.

See Figure 1 for an example bid graph. The vertices are
labelled {i, Sij , pij}, where i ∈ N . WDP is equivalent to
finding a maximum weighted independent set on the con-
structed graph.

Item graphs are a representation of CAs altogether dif-
ferent from bid graphs. We will be interested in restricting
our attention to CAs that can be represented by an item
graph with a specific structure, in order to gain insight into
the structure of the auction’s bid graph. Informally, in a
valid item graph of the CA, the bids must be connected in-
duced subgraphs of the item graph. Formally, we have the
following definition:



Figure 1: An example of a bid graph represent-
ing a CA. The CA consists of 4 agents, 6 items
{A,B,C,D, E, F}, and 7 distinct atomic bids.

Definition 2.2.1. Given a CA, a valid item graph G =
(M,E) representing the given CA must satisfy the following
conditions: each item is represented by exactly one vertex
in the graph, and for each atomic bid (S, p), the induced
subgraph of G on the vertices contained in S ⊆ M must be
a connected graph.

For example, let’s assume we are working with a CA on
four items consisting of the following atomic bids: ({1}, 1),
({1, 2, 3}, 5), ({2}, 4), and ({2, 3, 4}, 6). For simplicity, we
assume that we have only one bidder. The graphs in Fig-
ure 2 are all examples of valid item graphs for this CA. We
note how in each example there are exactly four vertices
(corresponding to the total number of items in the CA).
Further, for each example, if we restrict our attention to the
vertices corresponding to any particular atomic bid, then
the subgraph induced on those vertices is connected.
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Figure 2: Examples of valid item graphs for the same
combinatorial auction.

There are other examples of valid item graphs for the
above CA. Specifically, the addition of edge {1, 3} to the
item graph in Figure 2(b) or 2(c) results in two additional
valid item graphs for the above CA. Further, there are many
other CAs for which Figure 2(a) is also a valid item graph.
In particular, any CA on four items. Consequently, given
an item graph we cannot know for certain which CA it rep-

resents. In contrast, one may translate a bid graph to and
from a CA and in polynomial time. Any CA obtained from
a bid graph yields the same solution to WDP, ignoring the
case where multiple agents submitted the same highest bid
on a bundle of items. Since an item graph may represent
many CAs and allows for many different combinations of
bids and bid values, the solution to WDP could be different
for each CA that the item graph may represent. Obviously
then, we cannot formulate a specific bid graph given an item
graph. However, we can prove various properties about the
bid graph of any CA that may result in a given item graph.
This will be one of our main goals.

3. RELATING ITEM GRAPHS AND BID
GRAPHS FOR FIXED CAS

While item graphs and bid graphs differ in how they rep-
resent CAs, the underlying instance of the auction they rep-
resent is the same. We wish to determine how bid graphs
and item graphs relate to one another. In this section we
investigate classes of item graphs and whether they enforce
enough structure on their CAs to constrain the class of bid
graphs associated with these auctions. First, we give a result
by Conitzer et al.

Theorem 3.0.2 (Conitzer et al. [2]). Suppose we
are given a CA problem instance, together with a tree decom-
position T with treewidth tw of an item graph GI . Then the
optimal solution to WDP can be determined in O(|T |2(R +
1)tw+1) using dynamic programming.

The algorithm presented by Conitzer et al. is vastly differ-
ent from any algorithm designed to work on bid graphs, and
it is beyond the scope of this paper whether or not there
is some relationship between the two, in the most general
sense. If we consider only CAs that have item graphs of
treewidth one, then the item graph is a forest, for which we
can solve WDP on each component separately. As stated,
we know of a polynomial-time solution to WDP for an item
graph that is a tree [12], which easily extends to an item
graph that is a forest. We are interested in investigating
the bid graph expression of all CAs that have a valid item
graph representation with a treewidth of one. Rather than
starting by investigating item graphs of treewidth one, we
will consider a simpler example where our item graphs are
paths. First, however, we discuss whether or not the item
graph is connected.

Lemma 3.0.3. If it is valid for an item graph GI of a
given combinatorial auction to be disconnected, then either
the bid graph of the auction must be disconnected, or the
combinatorial auction contains only bids on items in one
component of GI .

Proof. Consider any bid B1, which must contain only
items from one connected component of GI . Any other bid
B2 that is adjacent to B1 in the bid graph must contain
at least one item from B1. Therefore, B2 must contain only
items from the same connected component of the item graph
as B1. If it did not, then the item graph would not be valid
as the induced subgraph of GI on the items of B2 would be
disconnected. If the bid graph is connected, then there is a
path from B1 to any other bid, and hence all bids must con-
tain only items from the same connected component of GI as
B1. If all bids contain only items from the same component
of GI , then this is valid. If not, we have a contradiction.



We will assume that our item graph representation is con-
nected, as otherwise our theorems will hold for each of the
connected components of the item graph.

Note 3.0.4. If a path is a valid item graph for a given
combinatorial auction, then the bid graph representation of
the auction is an interval graph.

Proof. Let us consider an arbitrary combinatorial auc-
tion that has a valid item graph representation as a path.
Each bid of the combinatorial auction must induce a con-
nected subgraph of the path. The path has length |M |.
Consider one of the vertices of degree one, u. Starting at
u and walking along the path, without repeating any edge
or vertex, relabel each vertex starting with the integer 1,
and increasing the label value by 1 with each subsequent
vertex. To be more specific, the vertex adjacent to u will
have label 2; the next vertex in the path will have label 3,
and so on. With this labeling, it is easy to see that each bid
in the combinatorial auction is a sub-interval of the inter-
val [1, |M |]. The bid graph is then an intersection graph of
the sub-intervals of the interval [1, |M |], and therefore is an
interval graph.

Note 3.0.4 was also noted by Sandholm and Suri, although
no proof was given [12]. As a corollary to Note 3.0.4, we see
that if a cycle is a valid item graph, then the bid graph
is a circular arc graph. A cycle can be viewed as a circle,
with each bid an arc of the circle. The bid graph is then
the intersection graph of those arcs, and hence is a circular
arc graph. This observation was also made by Sandholm
and Suri [12]. The maximum weighted independent set of
a circular arc graph can be found in time O(l|S∗|), where l

is the minimum number of arcs passing through some point
on the circle [13]. This is comparable to the algorithm by
Sandholm and Suri mentioned above, which has a running
time of O(min{s, |M |}(R + |M |)) and applies to valid item
graphs that are cycles.

Drawing conclusions about an item graph with treewidth
one is more complicated. First of all, a graph has treewidth
one if and only if it is a forest. Since we are assuming that
our item graph is connected, then our item graph must be
a tree.

Theorem 3.0.5. For a given combinatorial auction CA,
if a graph GI = (VI , EI) of treewidth one is a valid item
graph for the auction, then its bid graph representation is a
chordal graph.

This theorem follows directly from a theorem by Gavril
[6]. The intersection graph of a family of subtrees of a tree
is called a subtree graph, where two subtrees intersect if they
share a vertex [6]. Gavril’s result states that a graph is
chordal if and only if it is a subtree graph [6]. Since GI is a
tree and by definition the bids of the combinatorial auction
CA it represents induced connected subgraphs of GI , the
bids induce subtrees of GI . By definition, the bid graph is
the intersection graph of the bids of CA, and thus is also the
intersection graph of a family of subtrees of GI . Therefore,
the bid graph must be chordal [6].

We cannot use the other direction of Gavril’s result to
prove the converse of Theorem 3.0.5. Gavril places no re-
strictions on the structure of the subtree graph for which
the result applies, while we require that the vertices are the
set of items in order to be a valid item graph for a given bid

graph. In Section 4, we will introduce a notion of bid graph
equivalence in order to make full use of Gavril’s result.

It is not immediately obvious whether or not all CAs
whose bid graphs are chordal must have valid item graphs
that are trees. To investigate this question, we show that a
CA’s bid graph must be chordal if it has a valid item graph
with maximum cycle length three. We say a graph has max-
imum cycle length k if all cycles in the graph have length at
most k.

The proofs of Lemma 3.0.6 and Theorem 3.0.8 focus on
one arbitrary cycle of length three in our item graph GI =
(VI , EI). Without loss of generality, we label the vertices
involved as 1, 2, and 3. Consider the subgraph of GI con-
structed by removing edges {1, 2}, {2, 3} and {1, 3}. This
subgraph must have exactly three connected components
because the maximum cycle length in GI is three. There-
fore, there exist connected subgraphs Gi = (Vi, Ei), 1 ≤
i ≤ 3, of GI such that VI =

⋃
3

i=1
Vi, EI = (

⋃
3

i=1
Ei) ∪

{{1, 2}, {2, 3}, {1, 3}}, i ∈ Vi for 1 ≤ i ≤ 3, Ei = {(u, v) ∈
EI | u, v ∈ Vi} for 1 ≤ i ≤ 3, and for all 1 ≤ i < j ≤ 3,
Vi ∩ Vj = ∅. See Figure 3 for a depiction of this item graph.
We refer back to Figure 3 in the proofs of Lemma 3.0.6 and
Theorem 3.0.8.
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G
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2

1G
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Figure 3: Example of an item graph with at least
one cycle of length three. Subgraph Gi is assumed
to have maximum cycle length three.

First, we show that if a tree with one extra edge resulting
in a cycle of length three is a valid item graph for a CA, then
the auction’s bid graph must be chordal. To show this, we
use a lemma about CAs when their bid graphs are chordal.
Lemma 3.0.6 was derived from the idea of removing an edge
in any cycle of length three from a valid item graph, and
then adding that edge back. Of course, with the removal of
an edge in the item graph, we can no longer have certain
bids and so these bids are removed to result in a modified
combinatorial auction. We show that given any cycle, if for
each edge in that cycle the modified combinatorial auction
has a chordal bid graph, then so does the original auction.

For brevity, we say a bid (S, p) contains item set S′ ⊆ M if
S′ ⊆ S. Further, we say a bid (S, p) does not contain item set
S′ ⊆ M if S′ 6⊂ S. We introduce notation to denote when a
bid contains a set of items S+, while not containing another
set of items S−. For all 1 ≤ i ≤ |M |, we let i− denote
an alternate label for item i. Hence, label i− represents
the same item as i. The label i is used to denote items
that are contained in a bid, whereas the label i− is used
to denote items that are not contained in a bid. We let
M− = {1−, 2−, 3−, . . . , |M |−}, and let S∗ = S+∪S−, where
S+ ⊆ M , S− ⊆ M−, and {i | i ∈ S+, i− ∈ S−} = ∅. We
say a bid (S, p) contains item set S∗ = S+ ∪ S− if S+ ⊆ S

and {i | i ∈ S, i− ∈ S−} = ∅. For example, we define bid



B = (S, p) by S = {1, 2, 4} and p arbitrary. Bid B contains
item sets {1, 2}, {1, 4}, {1, 2, 4}, and {1, 3−, 4}. Bid B does
not contain item set {4−}, {1, 2, 3}, or {1, 2−, 3−, 4}.

Lemma 3.0.6. We let CA denote a combinatorial auction
that has a valid item graph GI = (VI , EI) such that the
maximum length of any cycle in GI is three and GI has at
least one cycle. We denote the bid graph of CA by GB. We
let CI be any cycle in GI , and we label its vertices as 1, 2,
and 3. We let {i, j} be any edge in cycle CI , and CA′ be
the modified combinatorial auction obtained by removing all
bids containing {i, j}, but not containing {1, 2, 3}, from CA.
Given any cycle CI in GI , if for any edge {i, j} and CA′ as
defined above the bid graph of CA′ is chordal, then the bid
graph of CA is chordal.

Proof. We refer the reader to Figure 3 for a depiction of
GI , as previously discussed.

We assume that for any {i, j} in CI , the combinatorial
auction resulting from the removal of all bids containing
{i, j}, but not containing {1, 2, 3}, has a chordal bid graph.
For each {i, j}, the resulting combinatorial auction may be
different, but they all have a chordal bid graph. Without loss
of generality, let CA′ be the combinatorial auction resulting
from the removal of all bids containing {1, 2, 3−} from CA.
The bid graph of CA′ is chordal. We have only to consider
what happens when we add back all the removed bids con-
taining {1, 2, 3−}, and prove that the result is a chordal bid
graph.

Assume that the bid graph is no longer chordal after adding
back either one or two bids containing {1, 2, 3−}. We do not
consider adding back more bids because any chordless cy-
cle can involve no more than two bids containing {1, 2, 3−}.
Specifically, by our definition of a bid graph in Section 2.2,
if two bids share an item then they are adjacent in GB .
Therefore, if a cycle involves three bids containing {1, 2, 3−}
then by definition they must all be pairwise adjacent to one
another. Hence, the cycle cannot be chordless. If we are as-
suming that the bid graph is no longer chordal, then it must
have at least one cycle CB of length at least four with no
chords. Cycle CB must involve at least one bid containing
{1, 2, 3−} because the original bid graph was chordal, but
not more than two such bids because otherwise it would not
be chordless. We note that the bids that we add back do
not contain item 3.

We claim that cycle CB must also involve a bid containing
item set {1−, 2, 3}. If not, we construct a bid graph G′

B by
removing all bids containing {1−, 2, 3} from GB . None of
the bids removed are from CB because CB does not involve
a bid containing item set {1−, 2, 3}. The resulting bid graph
is not chordal because the original bid graph was not chordal
and we removed none of the bids in the chordless cycle CB .
However, by assumption, the bid graph must be chordal,
which is a contradiction. By the same logic, the cycle CB

must involve a bid containing {1, 2−, 3}. Specifically, we
can derive another contradiction; the bid graph resulting
from removing all bids containing {1, 2−, 3} from GB is not
chordal by construction, but was assumed to be chordal.

Therefore, the cycle CB must have the following three dis-
tinct bids: one containing {1, 2, 3−}, one containing {1−, 2, 3},
and another containing {1, 2−, 3}. These three bids form a
clique of size three within CB, which is not possible because
CB is chordless. Therefore, the bid graph resulting in the
addition of one or two bids containing both items 1 and 2

(but not containing item 3) must be chordal.
We continue to add back bids containing {1, 2, 3−} two

at a time until only one remains. Finally, we add the last
remaining bid containing {1, 2, 3−}. From above, at no point
during the addition of one or two bids containing {1, 2, 3−}
can the resulting bid graph become non-chordal. Therefore,
the bid graph resulting from adding back all bids containing
{1, 2, 3−} is chordal. Hence, the original bid graph GB is
chordal.

With the result of Lemma 3.0.6, we have Lemma 3.0.7,
which will be used as a base case of Theorem 3.0.8.

Lemma 3.0.7. For a given combinatorial auction CA, if
a tree with one extra edge resulting in a cycle of length three
is a valid item graph for the auction, then its bid graph rep-
resentation is a chordal graph.

Proof. We denote the valid item graph as GI and the
bid graph as GB. Because GI is a tree with one extra edge
resulting in a cycle of length three, we can depict the graph
as in Figure 3. For simplicity and without loss of generality,
we have labeled the items of the cycle as 1, 2 and 3. Sub-
graphs G1, G2 and G3 of GI are trees. Consider the item
graph resulting from the removal of edge {1, 2}, {2, 3}, or
{1, 3}. This item graph is valid for a modified combinato-
rial auction resulting from the removal of all bids containing
{1, 2, 3−}, {1−, 2, 3}, or {1, 2−, 3}, respectively, from CA.
From Theorem 3.0.5, the bid graph of such an auction is
chordal.

We now apply the result of Lemma 3.0.6. Given any cycle
(in this case there is only one) and for each edge {i, j} in
that cycle, the modified combinatorial auction resulting from
the removal of all bids containing {i, j}, but not containing
{1, 2, 3}, from CA has a chordal bid graph. Therefore, by
Lemma 3.0.6 the original combinatorial auction CA has a
chordal bid graph.

Theorem 3.0.8. For a given CA, if there exists a valid
item graph GI = (VI , EI) representing the auction such that
the maximum length of any cycle in GI is three, then the bid
graph for the auction is chordal.

Proof. For this proof, when we refer to a valid item
graph, the length of all cycles in the graph is three. Theo-
rem 3.0.5 handles the case when there are no cycles, so we
assume that there is at least one cycle of length three.

The proof is by induction on the number of cycles of length
three. Lemma 3.0.7 proves the base case, when the number
of cycles of length three is one. We assume the result holds
for all valid item graphs with at most k cycles of length three.
We will show the result holds for all valid item graphs with
k + 1 cycles of length three.

Consider a valid item graph that has k+1 cycles of length
three. We focus on one arbitrary cycle CI of length three
in GI , and without loss of generality, we label the vertices
involved as 1, 2, and 3. Recall Figure 3 for a depiction of
GI , as previously discussed.

If we remove any edge {i, j} in CI from the item graph,
and remove all bids from the combinatorial auction that
contain {i, j}, but not {1, 2, 3}, then by construction the
resulting item graph is valid for the new auction. By our
inductive hypothesis, the new combinatorial auction’s bid
graph is chordal because the number of cycles in the item
graph decreased by one. Therefore, by Lemma 3.0.6 the
original combinatorial auction’s bid graph is chordal.



As a result of Lemma 3.0.7 and Theorem 3.0.8, it appears
that we can conclude that if a bid graph of a CA is chordal,
then a tree is not necessarily a valid item graph for the
auction. For example, the cycle of length three in Figure 4(a)
is a chordal bid graph, and the item graph in Figure 4(b) is
the only valid item graph for such a bid graph.

{1, {1,2}, 5}

{1, {1,3}, 4} {1, {2,3}, 5}

9(a)
3

1

2

9(b)

Figure 4: Example of (a) a bid graph that is a cycle
of length three, and (b) its only valid item graph.

To conclude our discussion on the relationships between
item graphs and bid graphs, we consider the CA with the fol-
lowing atomic bids, which has a valid item graph of treewidth
two: ({1, 2}, 5), ({2, 3}, 5), ({3, 4}, 5), and ({1, 4}, 4). The
bid graph is a cycle of length four, and a cycle of length
four is also a valid item graph, as depicted in Figure 5. This
example is interesting because the item graph has treewidth
two, which means that given a CA for which an item graph
of treewidth two is valid, the auction’s bid graph is not nec-
essarily a chordal graph.

{1, {1,4}, 4}

{1, {2,3}, 5}{1, {1,2}, 5}

{1, {3,4}, 5}

9(a)

4

1

2

3

9(b)

Figure 5: Example of (a) a non-chordal bid graph,
and (b) one of its valid item graphs.

We leave open the general relationship between item graphs
of treewidth two and bid graphs. Note that whatever classifi-
cation of bid graphs may arise from such a relationship, the
classification must encompass the class of chordal graphs,
because any item graph of treewidth one is also considered
to have treewidth two, by the definitions of treewidth and
tree decompositions.

4. MODIFYING COMBINATORIAL
AUCTIONS USING A NOTION OF
EQUIVALENCE

In this section, we turn our attention beyond the direct re-
lationship between item graphs and bid graphs, and discuss
the possibility of modifying a CA such that the bid graph of
the new auction is equivalent to the bid graph of the orig-
inal auction. Equivalent CAs are useful because a solution
to WDP for one auction can be easily translated into a solu-
tion to WDP for any equivalent CA. We will show a method
for modifying a CA while maintaining bid graph equivalence,
and further demonstrate how such modifications can be used
to find valid item graphs of smaller treewidth.

To begin, we define bid graph equivalence. Intuitively, two
bids graphs are equivalent if they are isomorphic, and two
CAs are equivalent if their bid graphs are also equivalent.
We now give the formal definition.

Definition 4.0.9 (Bid Graph Equivalence). Given
two bid graphs, G = (V,E) and G′ = (V ′, E′), we say that
G is equivalent to G′ (and vice-versa) if there exists an
isomorphism f of G and G′ and for all v = (S, p) ∈ V ,
f(v) = (S′, p′) ∈ V ′ we have p′ = p. If two CAs have equiv-
alent bid graphs then we say the auctions are equivalent.

We note that because the bid graphs are isomorphic and
the weights on all of the vertices are the same, a solution
to either auction gives us a solution to the other auction.
More importantly, if we construct an item graph using the
equivalent bid graph, and solve the WDP using this item
graph, then that solution can be used to solve the WDP on
the original bid graph by using the isomorphism to map the
bids back to the original bid graph.

Theorem 4.0.10. We let CA denote a combinatorial auc-
tion that has a valid item graph GI = (VI , EI). If the bid
graph GB of CA is chordal, then there exists a combinatorial
auction CA′ equivalent to CA that has a tree G′

I as a valid
item graph.

Proof. A result by Gavril states that a graph is chordal
if and only if it is a subtree graph [6]. Gavril gives an efficient
algorithm for constructing an item graph G′

I = (V ′
I , E

′
I) that

is a tree for any given bid graph GB = (VB, EB) that is
chordal [6]. We let CA be the combinatorial auction rep-
resented by GB. Gavril shows that |V ′

I | ≤ |VB | = R and
that G′

I can be found in at most O(R4) time [6]. The con-
struction considers each maximal clique C in GB , of which
there are at most R because GB is chordal, and constructs
a vertex in G′

I that represents C [6]. For each Bi ∈ VB,
consider all maximal cliques C1, C2, . . . , Ck in GB , where
Cj contains Bi. Gavril constructs G′

I such that the cliques
containing Bi induce a tree in G′

I . This item graph is valid
for a combinatorial auction that is equivalent to CA.

Since G′
I is a tree, the bids induce subtrees of G′

I . By
definition, the bid graph is the intersection graph of the bids
of CA′, and thus is also the intersection graph of a family
of subtrees of G′

I . Therefore, Gavril’s result applies and the
bid graph of CA′ must be chordal. Since CA′ is equivalent
to CA, which we now show, their bid graphs are isomorphic
and thus the bid graph of CA must also be chordal.

Consider the vertices of G′
I as items. Copy the bid graph

GB (to ensure our bid graphs are equivalent), and change
the contents of every bid Bi of our copy to be exactly the set
of items of G′

I that represent all the cliques to which Bi be-
longs. Specifically, Bi is now a bid on items C1, C2, . . . , Ck,
where Cj is a vertex of G′

I representing a clique of GB, which
contains vertex Bi. The resulting bid graph is equivalent to
GB and by construction is a subtree graph of G′

I [6]. There-
fore, GI is a valid item graph for a combinatorial auction
that is equivalent to CA. Therefore, if we find any solution
to WDP using the newly constructed item graph GI , this
solution can be easily translated to a solution for the original
combinatorial auction.

It is important we note that with our notion of CA equiva-
lence, Gavril’s result helps us show that even if the smallest
treewidth for GI is arbitrarily larger than one, there still



exists a CA equivalent with a tree as a valid item graph,
given that the bid graph is chordal. This perspective on
CA equivalence and the existence of item graphs of small
treewidth has never been shown before.

Corollary 4.0.11. For a given combinatorial auction
CA, the bid graph of the auction is chordal if and only
if there exists a combinatorial auction that is equivalent to
CA for which a graph of treewidth one is a valid item graph.

With the result of Theorem 4.0.10, it becomes difficult to
gauge the usefulness of item graphs. If it is possible for a CA
to have a valid item graph of treewidth one while another
equivalent CA does not, then it is possible that we are trans-
lating our auction to a less efficient form. Further, there may
or may not exist a CA with a chordal bid graph for which all
valid item graphs have treewidth at least tw, for some large
tw. That is, it is unclear how big of an improvement is pos-
sible using the equivalent CA technique. We have seen an
example of a CA with a chordal bid graph for which all valid
item graphs have treewidth at least two, but the improve-
ment could be much larger. Given this potentially large lack
of consistency between item graph representations of equiv-
alent CAs, the construction process, as previously described
in the literature, appears to be flawed.

5. CONCLUSIONS AND FUTURE WORK
Finding a solution to the winner determination problem

(WDP) is NP-complete in the general case, and it is also
equally difficult to find approximate solutions. Under special
circumstances that enforce structure on the CA, WDP can
become easier to solve. One such circumstance involves the
treewidth of the item graph representation of the auction.

We showed that if a graph of treewidth one is a valid
item graph for a combinatorial auction, then its bid graph
representation is a chordal graph. Moreover, we generalize
this result, showing that if there exists a valid item graph
representing a CA such that the maximum length of any
cycle in the graph is three, then the bid graph for the auction
is chordal. However, we demonstrate that the result does not
extend to cycles of length four or item graphs of treewidth
two. Further, the converse does not hold when the auction is
fixed. This impass leads to our next avenue of investigation:
modifying combinatorial auctions.

While solving WDP using an item graph of fixed treewidth
can be done in polynomial time [2], deciding whether a CA
has a valid item graph of treewidth three is NP-hard [7].
In Section 4, we circumvent this result by providing a new
technique for constructing item graphs.

We present a new technique for constructing item graphs
using our new notion of CA equivalence. Currently the item
graph construction process, for which the results by Conitzer
et al. and Gottlob and Greco hold [2, 7], involves finding an
item graph for a fixed CA. We demonstrate that this is not
necessarily optimal. We leave open whether the construc-
tion process presented in Section 4 can be extended beyond
chordal bid graphs. It is important to note that any solu-
tion to an item graph for the equivalent CA can easily be
mapped to a solution to WDP for the original auction.

Understanding the relationship between bid graphs and
item graphs is a very important step to better understand-
ing combinatorial auctions and what makes the problem dif-
ficult to solve. Such an understanding may lead to new ap-

proaches to constructing item graphs and better algorithms
for solving restricted instances of the WDP for CAs.

Since it is NP-hard to find a valid item graph of treewidth
tw ≥ 3 [7], it may be better to find equivalent CAs for which
finding a valid item graph of treewidth tw is easy. This
brings to question the practicality of studying item graphs
of bounded treewidth. The new construction technique that
we introduce opens another avenue of investigation for deter-
mining the practicality of item graphs of bounded treewidth.
We initiate the study of combinatorial auction modification
and for future work, it may be interesting to consider alter-
native constructions.

It would also be interesting to investigate relationships
between bid graphs and item graphs of treewidth greater
than one. Our new notion of CA equivalence and the re-
sulting construction technique may be useful in this inves-
tigation. Further, Gottlob and Greco recently introduced a
new method for qualifying hypergraphs of CAs, which they
refer to as hypertrees of bounded hypertree width [7]. Item
graphs of bounded treewidth are a special case of hyper-
trees of bounded hypertree width, and as such it would be
interesting to see the parallels, if any, between their relation-
ships with bid graphs. Despite the fact that item graphs of
bounded treewidth are a special case of this new model, we
can construct a hypertree of bounded hypertree width for a
given CA, should one exist, in time that is polynomial in the
size of the auction [7]. A natural question would be to ask
how does our construction technique affect the new model
by Gottlob and Greco? Does the new construction method
account for why an item graph of bounded treewidth was
previously NP-hard to construct, for treewidth larger than
two, while a hypertree of bounded hypertree width is poly-
nomial to construct for any fixed hypertree width?
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