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1 Overview

In this lecture, we cover BGP (Border Gateway Protocol) and interdomain rout-
ing, and discuss their relation to game theory.

2 Introduction

The Internet can be viewed as a collection of “clouds”, where each cloud is an
autonomous system (AS), a network (or a set of networks) that is under a single
administration. For example, the whole UMD network can be an AS, while for
larger corporations like AT&T, the whole corporate network can be divided into
several ASes, say AT&T California, AT&T Texas, and so on. Each AS has an
officially registered AS number (ASN). Currently (as of 2010) there are over
35,000 registered ASNs in use.

IGP (Interior Gateway Protocol) is used inside one AS. It is used to figure
out how do to route within an AS. IGRP (Interior Gateway Routing Protocol)
and OSPF (Open Shortest Path First) are used as an IGP. They are distance-
based policies.

IGRP, together with its enhanced version, EIGRP (Enhanced IGRP), are
Bellman-Ford based protocols. They are distance-vector routing protocols. In
each router, there is a routing table which is a vector of size n (n is the number
of routers in the AS). This vector indicates the distance to other routers in the
AS, as well as the next hop neighbor to send the packet to. The router does not
possess the full information about the network topology. The distance-vector is
advertised to its neighbors to perform updates to the routing table. IGRP and
EIGRP are supported by Cisco routers.

OSPF, on the other hand, is a link-state routing protocol. It saves the
current state (adjacency matrix) of the whole “world” (which is the whole AS).
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It is a Dijkstra based protocol and is more dominant. The adjacency matrix
is updated with the distance / capacity of the router’s links. It is more global
compared to EIGRP. If there are several shortest paths, it divides the payload
into parts and utilize all shortest paths so it is faster. OSPF is also supported
in Cisco routers.

In updating the distance metrics, we assume metricity (or triangle inequal-
ity), i.e. d(a, c) ≤ d(a, b) + d(b, c) for all router a, b and c in the AS.

BGP (Border Gateway Protocol) is the sole protocol used for routing be-
tween domains. It replaced EGP (Exterior Gateway Protocol) since 1994 and
BGP version 4 is now the accepted standard. It allows each AS to define its
own preference for routing policy. The policy does not need to adhere to a
distance-based policy like the ones in Interior Gateway Protocol (IGP) metrics
and Exterior Gateway Protocol (EGP). In BGP, each AS becomes a node. By
making sure the AS number does not appear in a path more than once, loops
are prevented.

The analysis of the robustness of policy choices in BGP has implication to-
wards the overall efficiency and the functionality of the Internet. Also, stability
correspond to Nash equilibria and that’s why we study BGP.

3 Theoretical Model

We model the whole system as an undirected graph on ASes, where each AS is a
node and we want to find some route to the destination d. The goal is to design
mechanism so as to have good behavior. Consider the BGP routing mechanism
where d is the destination:

1. d advertise itself

2. For all router v 6= d:

• Iteratively receives updates about path to d

• Receives status updates

• Choose the best path and update the forwarding table (according to
some policy)

• Announce the best path to its neighbors similar to IGRP

As a simple example, node i (i = 1, 2, 3) prefers the route i(i+ 1)d to id to
the destination d:

Let’s say at the beginning, 3 picks the route 3d (as there are currently no
paths chosen). Then, 2, on seeing the choice of 3, picks the route 23d (since
23d is preferred by 2 to the route 2d). 1 picks the route 1d (Figure 3, left).
Then 3, on seeing the choice of 1, changes its mind and picks the route 31d.
Next, seeing that the route 23d is gone, 2 has to pick the route 2d (Figure 3,
right). In turn, 1 sees the opportunity to change is route to 12d, which forces
3 to change its choice. This switching among route on each router’s preference
list goes on forever which means the system is not stable.
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Figure 1: Not all choices of preference list lead to stable paths.

4 The Stable Path Problem (SPP)

The stable path problem (SPP) is as follows:
Input: an undirected graph G = (V, E).

• For each v ∈ V, Pv is the set of permitted (simple) paths from v to the
destination vertex d.

• For each v ∈ V, there is a ranking function λv defined over Pv. If λv(P1) <
λv(P2) then P2 is a more preferred permitted path than P1.

• Empty path ε ∈ Pv is permitted and ranked lowest: λv(ε) = 0, while
λv(P) > 0 for P 6= ε.

• P1, P2 ∈ Pv =⇒ λv(P1) 6= λv(P2). (each path receives a distinct ranking)

• If the end point of a path P is the same as the start point of a path Q,
the concatenation of the two paths is denoted by PQ. If P = (1, 2) and
Q = (2, 3) then PQ = (1, 2, 3). Note that εP = Pε = P.

A path assignment is a function Π that maps each node u ∈ V to a path
Π(u) ∈ Pu (with the special case Π(d) = (d)). Initially Π(u) = ε which means
u is not assigned a path to the destination. The set of paths choices(Π,u)
for u = d is {(d)} and {(u, v)Π(v) | {u, v} ∈ E} ∩ Pu otherwise. This represents
all possible permitted paths at u that can be formed by extending the paths
assigned to neighbors of u. Given a node u, suppose W is a subset of the
permitted paths Pu such that each path in W has a distinct next hop. Then
the best path in W is defined to be best(W,u) = P ∈ W with maximal λu(P)
for W 6= ∅ and ε otherwise. The path assignment Π is stable at node u if
Π(u) = best(choices(Π,u), u). Note that if Π is stable at node u and Π(u) = ε,
then the set of choices at u must be empty. The path assignment Π is stable
if it is stable at each node u. Essentially, Π = (P1, . . . , Pn) where Π(u) = Pu
(assume 0 is the destination). If Π is stable and Π(u) = (u,w)P, then Π(w) = P.
Hence, any stable assignment defines a tree rooted at the destination (each node
has one outgoing edge that points towards the destination), although it is not
always the case that it is a shortest path tree.

3



Scribe: Yuk Hei Chan
Lecture 10 Date: 11/03/2010

0

1 2 210
20

120
10

u0

u1un−1

u2

Q1

Q0

Qn−1

R0

R1

Rn−1

Q2

0

Figure 2: (Left) A disagree gadget; (Right) A dispute wheel.

The stable paths problem S = (G,P = ∪vPv, λ) is solvable if there is a
stable path assignment. The example in Figure 3 does not have a stable path
assignment.

Theorem 1 (Griffin, Shepherd, Wilfong, TON 2002) SPP is NP-Complete
(proved by reducing it to 3-SAT).

When does SPP admit a unique solution? Let’s look at a configuration
with more than one solution. A disagree gadget is shown in Figure 2, left. In
this configuration, there are 2 stable paths, namely (2, 1, 0) and (1, 2, 0). The
disagree gadget can be generalized into a dispute wheel, as shown in Figure 2,
right:

1. A rim path Ri is a path from ui to ui+1

2. Spoke path Qi ∈ Pui

3. RiQi+1 ∈ Pui

4. λui(Qi) < λ
ui(RiQi+1)

Theorem 2 If the stable path problem S has no dispute wheel configuration,
then there is a unique solution.

Note that if S has no dispute wheel, then it is solvable. Roughly speaking,
having no dispute wheel implies safety and robustness.

There are two types of relationship between entities on the Internet, namely
provider-customer and peer-to-peer (Figure 3). Gao-Rexford condition is a rea-
sonable assumption in the context of connectivity of the Internet, which states
if there is no customer-provider (directed) cycle, then there is no dispute wheel
configuration, which implies a stable assignment. We can achieve this by filter-
ing of paths, e.g. not advertising your peers to your provider.

We can define a game such that Nash equilibria of the game are precisely
the stable solutions in the equivalent SPP formulation.
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5 Greedy Algorithm in the Absence
of Dispute Wheel

In the absence of dispute wheel, a greedy algorithm that is based on the idea
of “expanding the tree” can be used to find the solution to the SPP. Starting
with V0, which contains only the destination 0, we construct larger and larger
set Vi, such that {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk, and for v ∈ Vi, Π(v) ∈ Vi (i.e. the
whole path stays inside Vi).

If u ∈ V − Vi and P ∈ Pu, then P is said to be consistent with current
(partial) Πi if P = P1(u1, u2)P2, where P1 is a path in the digraph induced by
V − Vi, u2 ∈ Vi, u1 ∈ V − Vi, {u1, u2} ∈ E and P2 ∈ Π(u2) (Figure 4). Call a
path P a direct path to Vi if P1 = ∅ (in this case u = u1). Let Di be the set of
nodes with direct path to Vi. Assuming every node has a non-empty permitted
path to the origin, Di is non-empty. Let Hi ⊆ Di be the set of vertices u such
that a direct path of u is preferred among all consistent paths of u. For the
greedy algorithm to work, we want Hi to be non-empty at each iteration.

What if Hi = ∅ butDi 6= ∅? Since u0 ∈ Di−Hi, there is a vertex u1 ∈ V−Vi

and path R0 ∈ V − Vi from u0 to u1, such that {u1, v1} ∈ E, v1 ∈ Vi and
Pi(v1) ∈ Π(v1). Let the path from u0 to a vertex in Vi and on to the destination
be Q0. Since Q0 is not the preferred path, we have λ(R0Q1) > λ(Q0), where
R0 is a path in V − Vi that leads from u0 to u1, and Q1 is a path from u1

to v1 and on to the destination (Figure 5). Then consider u1. Again since
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Figure 5: The first step to a dispute wheel.

u1 ∈ Di − Hi, there exists u2 ∈ V − Vi, R1 ∈ V − Vi from u1 to u2, Q2,
v2 ∈ Vi with {u2, v2} ∈ E and λ(R1Q2) > λ(Q1). The argument continues and
eventually forms a dispute wheel (although u0 may not involved in the dispute
wheel). This shows that Hi 6= ∅ and proves that the greedy algorithm works in
the absence of dispute wheel.
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