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1 Overview

In this lecture, we are going to finish the material we covered in last week’s
lecture. Specifically, we are going to discuss hardness of approximation for
the algorithm we presented and illustrate some interesting related problems in
Computer Science. We are also going to present an approximation algorithm
for profit maximization in Adwords auctions.

2 Profit Maximization and Frugality for Auc-
tions(continued)

2.1 Scenario

First, let’s review the scenario we talked about last class.We are given:

• a set of items labeled from 1 to m

• a set of agents(i.e. single minded bidders) labeled 1 to n

• each agent has a value vi for the set Si

Our goal is to price the items individually such that we maximize our profit.
Our assumptions are that the agents can either buy or not buy a particular
item(i.e. no fractional items allowed), without having the possibility to go to
another store and that items are available in unlimited supply.
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2.2 Algorithm

• consider the same prices for all the items

• the candidate prices are qi = vi/|Si|

2.3 Hardness of Approximation

We have seen in the previous lecture that the analysis of the algorithm is tight.
However, it is a rather simple mechanism and a natural question arises: Can
we do better? As we shall see in the next section, the answer is essentially No.
The way we are going to prove this is by doing a reduction from our current
problem to a problem we already know is hard to approximate(Unique Coverage
Problem).

3 Unique Coverage Problem

3.1 Scenario

We are given:

• a universe U of n elements

• a collection S of subsets of U

The goal is to find a subcollection S ′ ⊆ S which maximizes the number of
elements that are uniquely covered. (i.e. appear in exactly one set of S ′)

3.2 Hardness of Approximation

There is a simple O(logn)-approximation algorithm that is similar to our pre-
vious one for the pricing problem. Surprisingly, this is as essentially the best
approximation we can get. Specifically, we have the following:

Theorem 1 The Unique Coverage Problem is hard to approximate within a
factor better than O(logc(n))), 0 < c < 1, unless NP has a sub-exponential
algorithm. Indeed, the problem is O(log1/3(n)) hard or even O(log(n)) hard
under stronger but plausible complexity assumptions.[?]

We are not going to discuss the proof of the theorem. Rather, we are going
to proceed to the aforementioned reduction.

3.3 Reduction

As we mentioned before, we are going to do a reduction from our previous pricing
problem, therefore proving that the Unique Coverage Problem is a special case
of our pricing problem.

We do this by doing the following mapping:
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• each set Si maps to an item Ii

• each element ei of the universe U maps to a bidder bi

• buyer bi has valuation 1 for one bundle Bi, namely the set of items Ij that
corresponds to sets Sj containing the ei

Under this mapping, we get that the zero-one pricing of items corresponds
to the Unique Coverage Problem. On the other hand, we can obtain the general
fractional case from the zero-one case by adding some constant factor approx-
imation. Therefore, our reduction is complete and hardness of approximation
established.

4 Two Well-known Special Cases of the Pricing
Problem

4.1 The Highway Problem

• n items corresponding to highway segments, labeled 1 to n

• the bidders correspond to drivers who desire bundles of highway segments
represented by the interval [i, i ′]

With lots of effort, one can surpass the general case O(logn)-approximation
and obtain a O( logn

loglogn
)-approximation.[?] Recently, a PTAS with (1+ǫ)-approximation

has been developed.[?] However, the problem is strongly NP-hard.[?]

4.2 The Graph Vertex Problem

• all bundles have size 2, |Si| = 2

For bipartite graphs, we can get a 2-approximation and for general graphs,
we can reduce them to the bipartite case(ignoring half of the edges) and therefore
obtain a 4-approximation.(F. Gavril and M. Yannakakis) It seems that 4 is tight
for combinatorial approaches.(APPROX 2010) It is also 2-hard assuming Unique
Games Conjecture[?] and at least 17

16
otherwise(under P 6= NP).

4.3 Conclusion

In summary, there are a lot of interesting problems for profit maximization,
especially considered in Computer Science, due to online auctions.
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5 Adwords Auctions

This section of the class has been delivered as a talk by Koyel Mukherjee.

5.1 Introduction

These problems investigate how search engine companies(Google, Yahoo, MSN)
decide what ads to display with each query such that they maximize their rev-
enue.(a profit maximization problem) The user types in a certain keyword(adword)
in which different advertisers are interested. When a keyword comes in, the ad
slots to be shown up in the search results are instantly sold to interested adver-
tisers, by conducting an auction. Since the keywords are not known in advance,
and as and when a keyword comes in, the bids by different advertisers get re-
vealed, the nature of the auction is online.

We assume a completely adversarial setting, by which we mean that we make
no assumption on the input pattern of keywords. Also, ad slots need to be sold
instantly as and when a keyword arrives, and the decision is irrevocable. We also
assume in this talk, that there is only one ad slot that needs to be auctioned,
and also, the advertisers bid their true value. That is, ensuring truthfulness is
not our objective in this talk. However, the advertisers have a fixed budget, and
we cannot exceed the budget in our allocations.

In this talk we outline the procedure given by Buchbinder, Jain and Naor [?].
They give a primal dual mechanism achieving a competitive ratio of 1 − 1

e

asymptotically, matching the ratio given earlier by Mehta et al. [?]. However,
the analysis presented by Buchbinder et al. is easier to understand, and does
not use a tailor-made potential function for analysis, as used by Mehta et al.
One crucial assumption in both these works is that the individual bid is small
compared to the budget of any advertiser, in other words, the budgets are very
large.

5.2 Setting

The underlying setting can be thought of as a bipartite graph.

• One side of the bipartition consists of the nodes corresponding to the
advertisers. These sets of vertices are known to the system from the start.
Let this set of advertisers be I, and |I| = n.

• The other side of the bipartition consists of nodes corresponding to the
keywords, and these nodes along with the edges incident on them get
revealed in an online manner, when they arrive. Let the set of keywords
be J, and |J| = m.

• Each advertiser has a daily budget Bi, known to the system.

We want to assign each online arriving keyword node to one interested adver-
tiser, who has an edge to this keyword node, and we want to maximize the
weight of the matching. Once we decide on including an edge in the matching,
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we cannot change our decision. However, we should not exceed the budget of
the advertiser. The total money that the advertiser will pay us is his budget,
even if he bids in excess of his budget. If all the bids were restricted to be 0

or 1 and the budgets very large →∞, then this becomes the online b-matching
problem, for which Kalyanasundaram and Pruhs [?] had proved that the best
competitive ratio one can get is 1 − 1

e
, and they gave an algorithm BALANCE

that achieves this competitive ratio. Mehta et al. [?] proved that 1− 1
e

is tight
even for the online auctions case, and present an algorithm that asymptotically
achieves this ratio, when budgets are very large. Buchbinder et al. also give an
algorithm with the same competitive ratio achieved asymptotically, but with a
cleaner primal-dual analysis.

The offline primal problem is the following:

max
∑

i

∑

j

bijyij

s.t. :
∑

i

yij ≤ 1 ∀j ∈ J,

∑

j

bijyij ≤ Bi ∀i ∈ I,

yij ≥ 0 ∀i ∈ I, j ∈ J

This was proved to be NP-hard.
The dual for the above problem is:

min
∑

i

Bixi +
∑

j

zj

s.t. :

bijxi + zj ≥ bij,

xi, zj ≥ 0 ∀i ∈ I, ∀j ∈ J
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5.3 Idea

We want to use weak duality to bound the competitive ratio. Since the primal
problem is maximization, by weak duality, any feasible primal solution P and
any feasible dual solution D is related as P ≤ D. This is true even for the primal
optimum solution, OPT . Therefore D ≥ OPT .

• We want start from 0 value both the primal and dual solutions, and at
every round of online auction(keyword arrival), we increment our primal
solution by ∆P and dual solution by ∆D.

• At the end our primal is
∑

∆P and the dual is
∑

∆D.

• We will try to bound the ratio of ∆P/∆D at every round.

• Since the ratio of 1 − 1
e

is tight for this problem, if we can bound

∆P/∆D ≥ 1 − 1
e

at every round, then at the end our primal solution is

P ≥ (1 − 1
e
)D ≥ (1 − 1

e
)OPT

and we get an algorithm with a competitive ratio 1 − 1
e
.

One might wonder why we can’t use greedy in this problem and just allocate
the keyword to the highest bidder, but due to the budget constraint we can
construct an example where greedy can only do as well as 1/2. Say, there are
two types of keyword, w1 and w2, and two bidders each with a budget of N.
Bidder 1 has bids 1 for both w1 and w2, whereas bidder 2 has bid 1 only for w1

and 0 for w2. If now w1 comes N times, followed by w2 N times, we allocate
greedily w1 to bidder 1 for all the N arrivals, and exhaust his budget. When w2

comes N times, we have no one to allocate. So we get a revenue of N, whereas
OPT could have got 2N.

Hence the intuition is to balance the allocation somehow. We should not
allocate to the same bidder again and again. Mehta et al. [?] had a similar
idea, and used a potential function to decrease the effective bid of an advertiser,
depending on the how much his budget is already exhausted. Here, we outline
the approach of Buchbinder et al. [?]. In this approach we assume only one
keyword arrives at a time.

5.4 Algorithm

The algorithm is as follows:

1. Initially ∀i, xi ← 0. (Implicitly all zj and all yij at 0 to maintain the
initial P = 0 and D = 0.
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2. Upon arrival of a new keyword j, allocate to the advertiser i ∈ argmaxî∈Ibîj(1−

xî)

3. If xi ≥ 1, do nothing.

4. Otherwise, charge i the minimum of bij and his budget, and set yij ← 1.

5. zj ← bij(1−xi) (explicitly modifying zj only the one time it arrives. Each
arrival is considered new)

6. xi ← xi(1 +
bij

Bi
) +

bij

(c−1)Bi
, where c = (1 + Rmax)

1
Rmax , where Rmax =

maxi∈I,j∈J
bij

Bi

5.5 Analysis

Theorem 2 The algorithm is (1 − 1
c
)(1 − Rmax) competitive for the online

budgeted allocation problem. The competitive ratio →∞ as Rmax → 0, in other
words, as the budgets Bi →∞ ∀i ∈ I and the bids are small compared to budgets.

Proof:

Claim 1: The algorithm produces a dual feasible solution.

We have that xi ≥ 0 by assignment, since we only increment xi, if we change
it. Also, zj ≥ 0 by assignment. We update the value of zj to bij(1 − xi), only if
xi < 1, and hence (1−xi) > 0. If xi ≥ 1, then the dual constraint bijxi+zj ≥ bij

is automatically satisfied. For the advertisers for which xi < 1, we update zj to
maxî∈I bîj(1 − xî).

zj = bij(1 − xi) ≥ bîj(1 − xî)∀î ∈ I;

zj + bîjxî ≥ bîj∀î ∈ I

Claim 2 : ∆P ≥ ∆D(1 − 1
c
) in every iteration when there is a non-zero in-

crement in ∆D and ∆P.

When there is a non-zero increment in the dual, we have:

∆D = Bi∆xi + zj = Bi(
bijxi

Bi

+
bij

(c − 1)Bi

) = bij(1 +
1

c − 1
).

The increment in primal is bij, because we set yij = 1 even if the remaining
budget is less than the current bid. Hence ∆P/∆D = 1 − 1

c
.
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Claim 3: The algorithm produces an almost feasible primal solution.

We have that yij ≥ 0 always. However, the infeasibility may arise due to
violation of budget, when the remaining budget is less than the bid, and we still
set yij = 1. In such cases,

∑
j bijyij ≥ Bi. Ideally we want xi to become 1 when

the budget is just exhausted, but because of arbitrary values of bids, it is dif-
ficult to ensure that. Instead, we prove a weaker claim: When

∑
j bijyij ≥ Bi,

then xi ≥ 1. This will ensure, that the budget may be violated in at most one
iteration for every bidder. We show this by proving inductively:

xi ≥
c

∑
j

bijyij

Bi − 1

c − 1
.

Hence, when the budget gets exhausted, xi ≥ 1. Initially it is true trivially. Let
us assume it holds for bidder i at some interation k, when bidder i is chosen.

xi(end) = xi(start)(1 +
bik

Bi

) +
bik

(c − 1)Bi

;

xi(end) ≥
c

∑
j∈J−{k}

bijyij

Bi − 1

c − 1
(1 +

bik

Bi

) +
bik

(c − 1)Bi

xi(end) ≥
c

∑
j∈J−{k}

bijyij

Bi (1 + bik

Bi
) − 1

c − 1

xi(end) ≥
c

∑
j∈J−{k}

bijyij

Bi c
bik
Bi

−1

c − 1

xi(end) ≥
c

∑
j

bijyij

Bi − 1

c − 1

where the first inequality follows from induction hypothesis, and the second one

from the fact: for 0 < x ≤ y ≤ 1,
ln(1+x)

x
≥

ln(1+y)

y
. (easy to prove). In this

inequality, if we replace x with bik

Bi
and y by Rmax, then we get,

ln(1 + bik

Bi
)

bik

Bi

≥
ln(1 + Rmax)

Rmax

But ln(1 + Rmax) = ln(cRmax) = Rmax ln(c). It is easy to get the rest.

However, we still might have violated the budget in at most one iteration for
every i ∈ I. The maximum violation is:

∑
j bijyij ≤ Bi +maxj∈J bij. Therefore,

we can lower bound the real (feasible) primal profit obtained by the algorithm
as
∑

j bijyij
Bi

Bi+maxj∈J bij
≥
∑

j bijyij
1

1+Rmax
≥
∑

j bijyij(1−Rmax). The first
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inequality is by the definition of Rmax and the second inequality is by binomial
expansion.
Putting the three claims together, we have that our algorithm gives a feasible
primal value Pf ≥ P(1−Rmax) ≥ D(1− 1

c
)(1−Rmax) ≥ (1− 1

c
)(1−Rmax)OPT ,

at the end, thereby proving the theorem.
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