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1 Overview

In this lecture, we introduce the classic secretary problem and its generalization
the multiple-choice secretary problem, and then discuss the submodular multiple-
choice secretary problem. At the end, we consider online auctions for dynamic
environments with a power-point slide[2].

2 Secretary Problem

The Secretary Problem is traditionally formulated as marriage(fiancee) problem
or house selling problem[1]. It has been richly studied in optimal stopping theory,
in which we design the mechanism of choosing a time to take a particular action
under uncertainty so as to maximize an objective function. The problem is of
much interest due to its close connections with online auctions.

2.1 The classical secretary problem

Setting There are N job applicants arriving online one by one(sequentially) in
random order, assuming that the total number of applicants is known. After
interviewing an applicant i, we can decide its value vi relative to all 1, 2, . . . , i-1
applicants who have been already interviewed and we must make an irrevocable
decision about whether or not to hire the applicant. The goal is to hire the best
applicant.

Random Permutation Model Values and thus Ranks of applicants can be
decided by the adversary but the order in which they appear is uniformly at
random(i.e., same chance of appearance). The motivation of this model is when
the values are coming from an unknown distribution which is practical.
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A trivial solution is to randomly choose some element j ∈ [1,N] to achieve
N -competitive ratio(i.e., its probability of success is 1/N ) in the worst case.
But we can do better by applying the stopping rule policy.

Optimal Algorithm

• Interview the first k applicants without accepting any

• Let maxv be the score(value) of best element

• Among the rest of candidates, choose the first person whose score beats
maxv

Indeed, Dynkin showed the optimal stopping rule for this problem in 1963
and proved that the probability of choosing the best applicant with a cutoff k,

P(k) approaches
1

e
, as N goes to infinity.

Proof: We can obtain P(k) by summing over all possible j, k+1 ≤ j ≤ N.

P(k)=
N∑

j=k+1

P(j th applicant is best)·P(the second best is among the first k

elements)=
N∑

j=k+1

1

N
(

k

j− 1
)=

k

N

N∑
j=k+1

(
1

j− 1
).

Figure 1: the probability of choosing the best applicant at j th element

As N→ ∞, let x be lim
N→∞

k

N
, t be

j

N
, and dt be

1

N
. The sum can be

approximated by the integral, P(k)=
k

N

N∑
j=k+1

(
1

j− 1
) ≈P(x )=x

∫1
x

1

t
dt=−x ln x.

Then, we find koptimal by taking the derivation of P(k) with respect to x, set-

ting it to 0, and solving for x. Since P ′(koptimal)=− ln x−1=0 ⇒ x=
1

e
, thus

P(koptimal)=P(
1

e
) = −(

1

e
) · ln 1

e
=

1

e
.

In sum, we conclude that the optimal cutoff tends to
N

e
as N increases and the

best applicant is selected with probability
1

e
which is 0.368(refer to p424∼427

in [5]).
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2.2 Extended Secretary Problem

In addition to the original secretary problem, marriage(fiancee) problem, a va-
riety of its extended problems are considered:

• Hiring Secretaries

• Dynamic Auction Market

• Variation of House Selling Problem

• The One-Armed Bandit Problem

• Detecting a change point

• The Burglar Problem

The secretary problem for unknown number of applicants in which its optimal
solution is much harder has been also studied in several papers. In these days,
one of promising applications in this problem is online auction with setting k
secretaries instead of just 1 (again in a random permutation model). There are
three different objectives to design online market:

1. Maximize the probability of selecting best k

2. Minimize the expected sum of ranks of selected k

3. Maximize the expected sum of values of selected k

We focus mainly on the third objective and its generalization in the next section,
though the other two can be modeled as well.

2.3 Submodular Secretary Problem

Definition 1 A function f is monotone if and only if f(A)≤f(B) for A⊆B⊆S.

Figure 2: submodularity, the marginal profit(return) of each item such as a is
non-increasing
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Definition 2 A function f on the subsets of a universe set x is submodular if
for any pair of subsets of X like A and B such that f(A)+f(B)≥f(A∪B)+f(A∩B)
(cf., it is subadditive if f(A)+f(B)≥f(A∪B)). An equivalent characterization is
that the marginal profit of each item should be non-increasing and economies of
scale, i.e., f(A∪ {a})-f(A)≥f(B∪ {a})-f(B) if A⊆B⊆S and a ∈S\B.

We say that a function f is submodular if adding an element, a to a set B causes
a smaller marginal improvement than adding the same element to a subset of B,
namely A (refer to the Figure 2 ). So the benefit of adding elements decreases
as the set to which they are being added grows.

We want to hire k secretaries such that each subset of secretaries has a value
for us which is not necessarily linear and this function is submodular in many
practical applications. If f(A)=

∑
a∈A V(a), i.e., linear case, the problem has a

(1-θ( 1√
k
))-competitive algorithm where its competitive ratio is approximated by

1 as k goes to ∞. Also, the case that f(A)=maxa∈A V(a) has been considered
in the classical secretary problem.

Do we have a c-competitive algorithm for the (non-monotone) submodular
secretary problem which is a little bit harder? (cf., the ratio can be as bad as
Ω(

√
n) for the subadditive secretary problem)

Theorem 1 There is an 8e2-competitive algorithm for the non-monotone sub-
modular secretary problem.

The algorithm is simple and intuitive. We partition the input stream into k
equal part S1, S2, . . . , Sk and choose exactly one secretary in each part. Let Ti
be the set of i secretaries we choose in the first i parts. In part Si+1, we try
to choose a secretary x∈Si+1 that maximizes; ∆i=f(x∪ Ti)-f(Ti). We prove the
expected value of f(Tk) is within a constant factor of the optimum solution. Let
R={ai1 , ai2 , . . . , aik } be the optimal solution. Note that the set {i1, i2, . . . , ik}

is a uniformly random subset of {1, 2, . . . , n}. Define X = {Si : |Si ∩ R| ̸= ϕ}. For
each Si ∈X, we pick one element, say si, of Si∩R randomly. These selected items
form a set called R′ =

{
s1, s2, . . . , s|X|

}
. Since our algorithm approximates such

a set, we study the value of such random samples of R in the following intuitive
lemmas. We first show that restricting ourselves to picking at most one element
from each segment does not prevent us from picking many elements from the
optimal solution (i.e., R).

Lemma 1 The expected value of the number of items in R′ is at least k(1− 1
e
).

Proof: By the standard methods like balls and bins(refer to p451∼452 in [5]),
we can show at most 1

e fractions of Si have empty intersection with R[4]. Hence,

the expected number of such sets is at most k
e
. Therefore the expected value of

|R′| is at least k(1− 1
e
).

Lemma 2 For a random subset A of R, the expected value of f(A) is at least
|A|

k
f(R).
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Proof: The proof can be done by randomness and submodularity. The crux of
our proof is that the local optimization steps(i.e., trying to make the best move
in each segment) indeed lead to a globally approximate solution.

Lemma 3 The expected value of f(Tk) is at least O(
|R′|
ek

f(R)).

Proof: Assume s1 is the first element of R′ to appear in our ordering. Define
∆j = f(Tj) − f(Tj−1). Note that due to monotonicity ∆j ≥ 0 and thus E [∆j] ≥ 0

with probability 1
e , we choose the element in Sj which maximizes the value of

f(Tj) given that the set Tj−1 is fixed. We get factor
|R′|
k

since we can relate the

value of f(Tk) with O(f(R′)) which is
|R′|
k

by Lemma 2.

Theorem 2 The expected value of the output of our algorithm is at least O(
1− 1

e

e
f(R))

(indeed, the exact number is
1− 1

e

7
f(R)).

Proof: Using Lemma 1 that the expected value of R′ ≥ k(1 − 1
e
). The details

of proof are found in [4].

For non-monotone case, this algorithm does not work, since if we select some
item for the ith set, it may hurt us after later step. However slight changes
works. Let us consider that we divide the input stream into two equal parts and
let 0 ≤ x ≤ 1 be a uniformly random variable. If x≤1

2
, we ran the algorithm on

the first part(and thus ignore the second part!). Otherwise we run the algorithm
on the second part and ignore the first part. One can prove that the sum of
the solutions in two parts is a constant times the optimal solution, OPT and
thus we get at least half of it[4]. Next we consider the applications of secretary
problem in online auctions.

3 Online Auctions for Dynamic Environments

Online auctions consider a setting in which agents arrive dynamically and re-
quire that an allocation and payment decision is made before they depart. As
a motivating example, let us consider Last-Minute Tickets[2].

3.1 Example: Last-Minute Tickets

While a traditional auction require that all bids should be received before the
auction deadline and then determine the winners, bidders in an online auction
have different time constraints and decision horizons, which can be suboptimal.

In this example, the auctioneer is selling one ticket in each hour to the
highest bidder at the second highest bid price and only competition makes a
price. The value- and time-strategies for three agents in the auction are shown
in the Figure 3, and if they are truthfully reported then the first bidder wins
a ticket for $80 at 11am and the second bidder does for $60 at 12pm, which is
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Figure 3: Last-Minute Tickets Auction

denoted by ⟨1, $80⟩, ⟨2, $60⟩. Would changing a value- or time- strategy affect
their incentives?

1. Bidder 1 reduce bid price for a ticket from $100 to $65⇒ ⟨2, $65⟩, ⟨1, $60⟩

2. Bidder 1 delay bid until 12pm with 1hr patience⇒ ⟨2, $0⟩, ⟨1, $60⟩

3.2 Basic Setting

Setting For k identical goods, each bidder wants at most one copy of the good
and the seller derives no utility from retaining copies of the good. Let θ de-
note the set of agent types, in which an agent i reports its type θi = (ai, di, wi)
that consists of arrival time ai, departure time di and value for the one item wi.

We make the standard assumption that agent i has a quasi-linear utility
function ui = wi − price.

Quasi-linear utility For an agent i and an allocation x, let qi = 1 if the
set xi ∩ [ai, di] contains an interval of length at least 1, otherwise qi = 0.

This online auction mechanism consists of an allocation rule, f and a payment
rule, p. When the vector of reported types is (θ1, θ2, . . . , θn), f(θ1, θ2, . . . , θn)
indicates the allocation which is chosen, and p(θ1, θ2, . . . , θn) indicates the
amount that agent i must pay.

allocation rule f: Θn 7−→ Schedules(set of allocations)
payment rule p: Θn 7−→ ℜn

In addition, we are interested in mechanisms with dominant-strategy equi-
librium, such that every agent i has a single optimal strategy whatever the
strategies and types of other agents. It will require mechanisms to time- and

6



Scribe: Hyoungtae Cho
Lecture 7 Date: 10/13/2010

value-SP(strategyproof or truthful) by reporting its true value ⟨ai, di, wi⟩ im-
mediately upon arrival as a dominant strategy equilibrium (i.e., no benefit oth-
erwise). Recall that we consider limited-supply (k, 1) online auction in which
an auctioneer has k identical goods to sell in any period before time horizon,
T. We assume that agents have no value for receiving an item outside of their
arrival-departure interval[3].

We adopt the benchmark offline mechanisms for the purpose of competitive
analysis.

• Efficiency benchmark is the highest value in this case (in general EFF(v)=∑
i≤k v

(i) where v(i) is ith highest value). This is the total value achieved
in an offline Vickrey auction, allocating k highest bidders and breaking
ties arbitrarily.

• Revenue benchmark is Vickrey price, the second highest value in this case
(in general F(2)(v) = max2≤l≤k l · v(l) where again v(i) is ith highest
value). This is the maximal revenue achievable by a fixed-price in which
the number of items sold in between 2 and k.

3.3 Adaptive Limited-Supply Auction

First, we consider the online selection problem, in which we remove incentives
and specialize to the case of disjoint arrival-departure intervals.

Figure 4: The online selection problem

It can be reduced to the secretary problem that we discussed in the previous
chapter. To recall it,

• We interview n jobs applicant in random order and want to maximize
probability of selecting best applicant

• Knowing relative ordering with regard to applicants already interviewed,
we must decide to hire or pass

By the secretary algorithm using the stopping rule suggested by Dynkin, we
picks the maximum element with probability approaching 1

e
as n→ ∞.

• We observe the first n
e
elements, and set a threshold equal to the maximum

seen so far

• We stop(pick) the next time this threshold is reached or exceeded.
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Although auction model provides the seller with the numerical values of their
bids, not just their relative ordering, it seems plausible that there is no way to
capitalize on this numerical information, since we are making no assumptions
at all about the distribution of bids.

However, the secretary algorithm is not truthful, since it is not time-SP.
Early agents have an incentive to hide until after time t =

⌊
n
e

⌋
, when the n

e
-th

agent appears. So change the mechanism:

1. At time τ, denoting arrival j = n
e
let p≥q be the top two bids yet received

2. If any agent bidding p has not yet departed, sell to that agent (breaking
ties randomly) at price q

3. Else, sell to the next agent whose bid is at least p

Let us consider two examples of this Adaptive Limited-Supply Auction.

Figure 5: Adaptive Limited-Supply Auction

Assume that we know the total number of bidders, n=6 and j=
⌊
n
e

⌋
=2. In the

first example, agent 1 who is the highest bidder with $5(p) bid at time τ wins
at price $2(q), the second highest bid. In the second example, since the highest
bidder, agent 1 has departed, sell to the next agent whose bid is at least $5(p),
namely agent 3 in this case, at price p.

In order to analyze the truthfulness of this mechanism, we look into as
follows:

• If agent i wins, the price charged to her does not depend on her reported
valuation
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• Possibility agent i wins is (weakly) increasing in wi, hence no incentive to
understate wi

• Reporting w′
i ≥ wi cannot increase the possibility that agent i wins at a

price ≤ wi, hence no incentive to overstate wi

• Price facing agent i is never influenced by di, so no incentive to misstate
di.

To prove truthfulness, only arrival time, ai which is a bit tricky, is left. We
claim that it is alway better to report the true arrival time ai if possible, given
two arrival times ai < a′

i.

Figure 6: Arrival time analysis for truthfulness

Let r,s be the (
⌊
n
e

⌋
-1)-th and

⌊
n
e

⌋
-th arrival times excluding agent i (say

n
e

in this case). Stating true arrival ai, agent i is offered price $5 on transi-
tion while agent 2 defines transition. Stating arrival time a′

i in (ai,r] does not
change anything. If agent i states arrival time a′

i in (r, s), then it influences
the transition time τ but not the pricing. Finally, stating arrival time a′

i ≥ s
influences the transition, but price is not improved (still $5).

We consider two cases for the competitiveness of the mechanism as follows:
Item sells at time τ: In this case, winner is the highest-bidding agent among
first n

e
. With probability 1

e
, this is also the highest bidder among all n agents.

Item does not sell at time τ: In this case, the auction picks the same out-
come as the secretary problem, whose success probability is 1

e
.

For both cases, we have a constant efficiency- and revenue- competitiveness;
the competitive ratio for efficiency is e+O(1), and the competitive ratio for
revenue w.r.t. Vickery is e2+O(1).

In all of this mechanism, we have a learning phase to set a fixed price for
the rest of the auction, followed by an accepting phase to exploit information
while making sure truthfulness. It can be extended multiple-choice secretary
problem and online auctions with reusable-goods(e.g., Wi-Fi use in Starbucks)
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and model-based online auction (in which we know the history of valuation in
the market).

4 Announcement

• Next class will be the talk on “Algorithms for Online Stochastic Ad Allo-
cation” by Vahab Mirrokni from Google Research in CSIC 3117 at 4∼5pm,
followed by the normal class in our classroom at 5:20∼7pm.

• The project report with 5min. presentation will be prepared for class on
Oct 27.
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