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1 Overview

We will look at MARKET CLEARING or MARKET EQUILIBRIUM prices.
We will consider two models with linear utilities : FISHER model and ARROW-
DEBREU model. See [1] and chapter 5 of [2] for more details. Finally we see
an application of the FISHER model to wireless networks.
I have also used as reference the scribe notes for this same lecture when this
course was taught by Prof. Hajiaghayi at Rutgers in Spring 2009.

2 FISHER model with linear utilities

We have the following setting :

1. A set B of m BUYERS with budgets B1, B2, . . . , Bm

2. A set G of n GOODS for sale with quantities q1, q2, qn

3. Utility of buyer i for good j is uij. {uij ∈ Q}

4. Amount of good j bought by buyer i is xij. {xij ∈ Q}

5. Each buyer has linear utility, that is ∀ i ∈ B

ui =
∑
j∈G

uijxij
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3 Formal definition of MARKET EQULIBRIUM

A market equilibrium (or market clearing)is a price vector P = (p1, p2, . . . , pn)
such that

1. Utility of each buyer ui is maximized within his budget. That is, ∀ i ∈ B,
we have

∑
j∈G pjxij ≤ Bi

2. Demand and suppy for each good j are equal. That is, ∀ j ∈ G, we have∑
i∈B xij = qj

Note that all the budgets are also spent in this situation because if some
buyer i had leftover budget then he could buy some good j and then for that
good j we will have

∑
i∈B xij 6= qj

Further we can also assume that qj = 1 ∀j ∈ G as all equations are linear
and we can scale by appropriate factors.

Theorem 1 Under the mild assumption that each good has atleast one potential
buyer (i.e. ∀ j ∈ G ∃ i ∈ B such that uij > 0), market clearing/equilibrium price
always exists.

4 ARROW-DEBREU model with linear utili-
ties

It is also called as WALRASIAN model or EXCHANGE model.
We have the following setting :

1. A set B of m AGENTS

2. A set G of n GOODS for sale

3. Agent i comes to the market with an initial endowment of goods given by
ei = (ei1, ei2, . . . , ein)

4. Utility of buyer i for good j is uij. {uij ∈ Q}

5. Amount of good j bought by buyer i is xij {xij ∈ Q}

6. Each buyer has linear utility, that is ∀ i ∈ B

ui =
∑
j∈G

uijxij
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Again, we can assume as in the FISHER model that amount of each good
present is 1 as all equations are linear and we can scale appropriately. That is,
∀ j ∈ G we have

∑
i∈B eij = 1

Here each agent can buy and sell unlike in the FISHER model. We want a
price vector P = (p1, p2, . . . , pn) so that if each agent sells his initial endow-
ment at these prices and buys his optimal bundle, then the market clears. [no
deficiency or surplus of any good].

5 FISHER model is special case of ARROW-
DEBREU model

In the following matrix, the rows correspond to agents and the columns corre-
spond to goods.

Endowment Matrix =


0 0 · · · 0 B1
0 0 · · · 0 B2
...

...
. . .

...
...

0 0 · · · 0 Bm
q1 q2 · · · qn 0


A given instance of FISHER model with linear utilities, m buyers and n

goods reduces to a ARROW-DEBREU model with linear utilities, (m+1) buyers
and (n+ 1) goods as follows :

1. We add MONEY as the (n+ 1)th good

2. We add ONLY-SELLER as the (m+ 1)th agent in addition to the initial
buyers

3. For each of the first m agents, their only initial endowment is money and
that too equal to their budget. They also have zero utility for money and
positive utility for all the other goods.

4. The (m + 1)th agent has as initial endowment quantity qj of good j for
all j ∈ G. He has positive utility for money and zero utility for all other
goods.

6 Proof of Theorem 1

We assume that the uij and the Bi variables are rational. As all equations are
linear, with appropriate scaling, we can assume that they are (large) integers.

We formulate the Fisher model with a convex program and then solve it
using the Eisenberg-Gale approach.
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6.1 Eisenberg-Gale Convex program

We can represent the problem as the following convex program : (why this rep-
resents the problem accurately is not clear and that is actually the hard part of
the problem)

max
∏
i∈B

uBi

i

where

• ui =
∑
j∈G uijxij ∀ i ∈ B

•
∑
i∈B xij ≤ 1 ∀ j ∈ G

• xij ≥ 0 ∀ i ∈ B , j ∈ G

We can instead solve the equivalent problem of maximizing the logarithm of
the above function. So our convex program becomes :

max
∑
i∈B

Bi.log(ui)

6.2 General result about convex programs

Let f be a given convex function. Then we can solve in polynomial time the
problem of minimizing f over a convex body.

6.3 Formulating our problem in convex programming set-
ting

The function f(x) = log(x) is concave as its double derivative is negative. Hence,
f(x) = −log(x) is convex. Also sum of convex functions is convex. Thus we
have the following :

max
∑
i∈B

Bi.log(ui) ⇒ min
∑
i∈B

−Bi.log(ui)

where the right hand side above is in the standard form of convex program-
ming. We solve it in polynomial time using the known methods for convex
programming.

6.4 Karush-Kuhn-Tucker (KKT) conditions for Convex
Programs

The KKT conditions for convex programs are similar to the primal-dual condi-
tions for linear programming. Corresponding to the constraint

∑
i∈B xij ≤ 1,

we have a variable pj. Our convex program has the following conditions :

∀ j ∈ G, pj ≥ 0 (1)
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∀ j ∈ G, pj > 0⇒ ∑
i∈B

xij = 1 (2)

∀ i ∈ B, ∀ j ∈ G, uij

pj
≤

∑
j∈G uijxij

Bi
(3)

∀ i ∈ B, ∀ j ∈ G, xij > 0⇒ uij

pj
=

∑
j∈G uijxij

Bi
(4)

Note that
uij

pj
is the utility for buyer i per unit price of item j and

∑
j∈G uijxij

Bi
is the utility per budget for buyer i.

6.5 Proof that the vector given by KKT conditions satis-
fies market clearing and vice versa

Suppose we have market equilibrium. Then we claim that the price vector
P = (p1, p2, . . . , pn) satisfy the above 4 equations. Equations (1) and (2) are
obvious. Equation (3) just states that utility for buyer i per unit price of good
j must be less than or equal to his utility per unit budget otherwise he would
have bought more of good j. Equation (4) states that buyer i purchasing good
j implies that his utility per unit price of good j must be maximum possible i.e.
equal to his utility per unit budget.

Now, suppose we have a price vector P = (p1, p2, . . . , pn) which satisfies
above four conditions. We claim that this price vector gives us a market equi-
librium. We had an assumption that every good has a potential buyer. That
is, ∀ j ∈ G, ∃ i ∈ B such that uij > 0. By equation (3), ∀ j ∈ G, ∃ i ∈ B

such that pj ≥
Biuij∑
j∈G uijxij

> 0. Thus, by equation (2), ∀ j ∈ G we have that∑
i∈B xij = 1 i.e. all of good j is sold. Now we claim that the following equation

holds true for all i ∈ B :

Biuij∑
j∈G uijxij

xij = pjxij (5)

If xij = 0, then the equation hold trivially otherwise we are through by equation
(4). Summing equation (5) over all j ∈ G, we have Bi =

∑
j∈G pijxij i.e. all

budgets are used up. Thus, there is market clearing.

6.6 Summary

We formulate our problem as a convex program which we solve in polynomial
time using known methods. We use KKT conditions to get another convex
program with same solution and we show that this satisfies market clearing
conditions thus implying that our initial convex program also finds the solution
to market clearing.
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In the linear case of FISHER model with each good having a potential buyer,
we have

1. Market Clearing always exists

2. The set of equilibrium allocations is convex

3. Equlibrium utilities and prices are unique (The assignments may not be
unique though)

Also, see [4] and [3] for more details and new approaches.

7 Application to distributed load balancing in
wireless networks

See [5] for the journal paper. The slides shown in class are available at the
course webpage

7.1 Overview of the problem

We have wireless devices (referred to as clients or users) who demand connection
to access points (AP). The AP’s have limited capacities and variable transmis-
sion power i.e. they are capable of operating at various levels. Devices would
like to connect to the AP that offers them the strongest signal. We want to
design a way to efficiently assign clients to AP’s so that there is no over-loading
of AP’s and maximum number of clients are assigned thus satisfying maximum
demand.
The simple heuristic of a client connecting to the AP with lightest load among
those with reasonable signals fails because this will require co-operation from
clients and AP’s which is not possible in practise.
The proposed cell breathing heuristic employs ideas from game theory. We
always want a client to associate himself with the AP providing strongest sig-
nal. The crucial point is that here an AP changes its communication radius
depending on its load.

7.2 Relation to Market Clearing

Our situation is analagous to the FISHER model with linear utilities as demon-
strated by the table below
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Market Equilibrium Load Balancing
Seller AP
Buyer Wireless Client
Goods Network Connectivity
Supply Capacity of AP
Price Power of AP
Utility Strength of Signal received
Market Clearance Either all clients are served or all AP’s are saturated

However, the analogousness is only inspirational. There is no known reduc-
tion from FISHER model to our problem but we try and use ideas from known
algorithms for FISHER model. In fact, there are some key differences between
our model and the FISHER setting as we observe below

Market Equilibrium Load Balancing
Demand is dependent on price Demand is independent of price (power)
Demand is splittable Demand is not splittable
Can be solved in poly time Continous power levels case can be

solved in poly time but discrete case is
APX-hard

Equilibrium clears both sides
and can be computed

Equilibrium clears either client side or
AP side and may not exist

7.3 Known approaches

Three approaches for Market Equilibrium :

1. Convex Programming based : Eisenberg and Gale (1957)

2. Primal-Dual based : Devanur, Papadimitriou,Saberi and Vazirani (2004)

3. Auction based : Garg and Kapoor (2003)

Three approaches for Load Balancing :

1. Linear Programming : Minimum weight complete matching

2. Primal-Dual : Uses properties of bipartite matching

3. Auction : Useful in dynamically changing situations

We shall see the linear programming approach in the following subsection
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7.4 Linear Programming based approach

We assume that if an AP j is transmitting at power level Pj then a client i at
distance dij receives signal whose strength is given by

Pij =
aPj

(dij)c

where a and c are constants capturing various models of power attenuation.

We create a complete bipartite graph with clients on one side and AP’s on
other. Conceptually, on the AP side, each AP is repeated as many times as its
capacity. We put weight between client i and AP j as follows

wij = c.ln(dij) − ln(a) = −ln(
Pij

Pj
)

Now, find the minimum weight complete matching. Power assignments are the
dual variables.

Theorem 2 Minimum weight matching is supported by a power assignment to
the AP’s.

We have the following two cases for the primal program :

1. Solution can satisfy all clients

2. Solution can saturate all AP’s

We consider the case of satisfying all clients i.e. the complete matching
covers all clients. Let C be the client set and let A be the set of access points.
The linear program is as follows

min
∑

i∈C,j∈A

wijxij

subject to

• ∀ i ∈ C,
∑
j∈A xij = 1

• ∀ j ∈ A,
∑
i∈C xij ≤ Cj

• ∀ j ∈ A, i ∈ C, xij ≥ 0
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The dual variables corresponding to the first 2 constraints are λi and πj
respectively. We write the dual program which goes as follows

max
∑
i∈C

λi +
∑
j∈A

Cjπj

subject to

• ∀ j ∈ A, πj ≥ 0

• ∀ j ∈ A, i ∈ C, λi + πj ≤ wij

We choose Pj = eπj . We will now use the complementary slackness condi-
tions to show that the minimum weight complete matching is supported by the
above chosen power levels. By dual feasibility, we have

− λi ≥ πj −wij = ln(Pj) − c.ln(dij) + ln(a) = ln
( a.Pj
(dij)c

)
(6)

By complementary slackness we have

xij = 1⇒ −λi = ln
( a.Pj
(dij)c

)
(7)

Equations (6) and (7) imply that each client is connected to the AP from which
it receives strongest signal strength.

Now we consider the case when the complete matching saturates all the
AP’s. The linear program is as follows :

min
∑

i∈C,j∈A

wijxij

subject to

• ∀ i ∈ C,
∑
j∈A xij ≤ 1

• ∀ j ∈ A,
∑
i∈C xij = Cj

• ∀ j ∈ A, i ∈ C, xij ≥ 0

The rest of the proof is similar to the previous case.

7.5 The case of Unsplittable Demand

min
∑

i∈C,j∈A

wijxij

subject to
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• ∀ i ∈ C,
∑
j∈A xij = 1

• ∀ j ∈ A,
∑
i∈CDixij ≤ Cj

• ∀ j ∈ A, i ∈ C, xij ≥ 0

The integer program is APX-hard in general due to knapsack. However under
the realistic assumption that number of clients is much larger than the number
of AP’s , we can obtain a nice approximation heuristic.

Theorem 3 Number of xij which are integral is atleast (number of clients) -
(number of AP’s)

So most clients are served unsplittably. We do not serve those clients which
were served splittably. This algorithm is almost optimal.

7.6 Discrete Power Levels

In real life, AP’s only have fixed number of discrete power levels. In such case ,
equilibrium may not exist. In fact, it is NP-hard to test whether equilibrium in
such cases. However, if every client has a deterministic tie-breaking rule then
we can compute the equilibrium if it exists under the given tie-breaking rule.

We first start with maximum power levels for each AP. Now, for every over-
loaded AP, we reduce its power by one notch. If an equilibrium exists then it can
be computed in time O(mk) where m is number of AP’s and k is the number
of power levels. The proof follows by induction. Let Pj be equilibrium power
level for jth AP. We can show inductively that when AP j reaches power level
Pj then it will never get overloaded again (we use the deterministic tie-breaking
rule here).

7.7 Conclusion

The theory of market equilibrium is a good way of synchronizing independent
enitities to do distributed load balancing

8 Homework Assignment

Suppose you want to sell your bike, car, house, etc., and you want to sell online
(e.g., craigslist). What would your strategy be? What is the difference in
putting your listing on craigslist vs. putting it on the classifieds of a magazine?
Will you search for other bikes? What are the assumptions? How much would
you sell for? Do you want to put it below/above the average price, and how
much above or below?
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