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1 Overview

2 Cooperative Game Theory

In game theory as we have studied it so far this semester, games are assumed
to be interactions between completely independent and selfish parties. For ex-
ample, Nash equilibria were assumed to be stable, since no single player could
alter their strategy and benefit. However, there could, for example, be a sit-
uation where there are two Nash equilibria. In the current equilibrium state,
no player benefits from changing their strategy, but two players together could
be enough to switch the equilibrium to a different, more beneficial equilibrium.
This mean that the first equilibrium is not in fact stable in the case of coop-
erating adversaries. When cooperating groups are fixed, we deal with this by
simply considering cooperating players to be a single player that controls all
members of the cooperating group. However, this does not deal with questions
of how players choose to cooperate or not with each other. We study this group
formation through cooperative games.

A cooperative game has two main components. The first is a set of agents,
N = {1, 2, . . . , n}. The second is a value function. We use 2N to denote the
power set P(N). The value function maps subsets of N to non-negative real
numbers, V : 2N → R+ ∪ {0}. Intuitively, one should think of the value function
as representing the payout that a subset of players can achieve as a result of
cooperating.

The players in this game are making no choices other than who to cooperate
with. The outcome of the game is a subset of cooperating players, along with
a payment vector ~x = (x1, . . . , xn) that specifies what portion of the payout is
given to each player in the game.
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Having defined a cooperative game itself, we now define several related con-
cepts and attributes:

Definition 1 A cooperative game is super-additive if for S, T ⊆ N we have that
V(S ∪ T) ≥ V(S) + V(T).

Definition 2 A cooperative game is monotonic if for all S, T with S ⊆ T we
have V(T) ≥ V(S).

Definition 3 A subgame of a cooperative game is simply the same game but
where the potential participating players are limited to a subset S. Formally,
there is a new value function VS : 2S → R+ ∪ {0} where VS(T) = V(T) for any
T ⊆ S.

Definition 4 The dual of a cooperative game is a game with the same N players
but with value function V∗(S) = V(N) − V(N \ S).

Definition 5 A simple cooperative game is one where V(S) is 0 or 1 for all S.

Definition 6 A cooperative game is symmetric if only the size of the coalition
matters. Formally, in a symmetric game we have V(S ∪ {i}) = V(S ∪ {j}) for all
subsets S ⊆ N \ {i, j}.

Definition 7 An outcome is efficient if the entire payout is distributed to play-
ers, meaning

∑
i∈N xi = V(N).

Definition 8 An outcome has individual rationality if no individual can do
better on their own than with the coalition, i.e. if xi ≥ V({i}) for all i.

Definition 9 An outcome has group rationality if no group can do better as its
own separate coalition, i.e. if

∑
i∈S xi ≥ V(S) for all S.

Definition 10 The core of a game is the set of outcomes that have both group
rationality and efficiency.

Definition 11 The power of player i over player j, denoted sij, is the amount
that i can get without cooperating with j. Power is specific to a particular out-
come, and is formally

sij = max
S

{V(S) −
∑
k∈S

xk : S ⊆ N, i ∈ S, j /∈ S} (1)

Definition 12 The prekernel of a game is the set of outcomes where all pairs
of players have equal power over each other, meaning that sij = sji for all i and
j.
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The prekernel and core are natural concepts of interest to economists. It
has previously been shown, and we take as given, the fact that the prekernel is
always nonempty, and also the following theorem:

Theorem 1 If the core of a game is nonempty, then so is the intersection of
the core and the prekernel. Furthermore, this intersection can be calculated in
polynomial time as long as any sij value can be calculated in polynomial time.

In the remainder of these notes, we will show that this result from economics
implies important results in network bargaining games that were first shown by
computer scientists in a more complex way.

3 Network Bargaining

We now turn from general definitions to a specific class of games. We look at
network bargaining games. Here we consider a graph where the vertices are
the n agents. Each agent i can participate in at most ci contracts. Potential
contracts are represented as edges in the graph, with weights wij representing
the profit that would be generated by that contract. We focus on the matching
varient, where ci = 1 for all i.

An outcome of such a game is a pair (M, {zij}). M represents a matching,
the set of contracts utilized, while the set of zij values sets how the profit from
each contract is split. (The subscripts on the edges wij are not sensitive to
order, but the subscripts on zij are.) In particular, we have that zij + zji = wij

for all (i, j) ∈M.
This outcome can trivially be converted to an outcome as defined for general

cooperative games. In the general network bargaining case xi =
∑

j∈N zij. In
the specific matching case, xi = zij if there is a j such that (i, j) ∈ M and is
zero otherwise.

Definition 13 The outside option αi is the best that i could achieving by join-
ing a contract other than that specified by the matching M. It is assumed that a
potential contract partner k will join the contract if and only if they are paid an
amount equal to the amount xk that they would be receiving otherwise. Formally,

αi = max
k:(i,k)∈E\M

{wik − xk}. (2)

Definition 14 An outcome is stable if xi > αi for all i.

Definition 15 An outcome is balanced if for all edges (i, j) in the matching M,
xj − αj = xi − αi.

Our main goal is to prove the following theorem:

Theorem 2 If we already know one stable solution, then we can find a balanced
and stable solution in polynomial time.
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4 Proof of Theorem 2

We prove Theorem 2 by showing that it is a special case of the more general
Theorem 1. We first define V(S) to be the value of the maximum-weight match-
ing possible on G[S], the induced subgraph on S ⊆ N. We will show that in this
formulation, a solution is stable if and only if it is in the core, and it is both
stable and balanced if and only if it is in the intersection of the core and the
prekernel. Given those results, Theorem 2 follows immediately from Theorem
1. (In this case it is trivial that sij can be computed in polynomial time.

Lemma 1 Outcome (M,~x) is stable if and only if the payoff vector ~x is in the
core.

Proof:This lemma is proved through linear programming using the strong du-
ality theorem and complementary slackness conditions.

First, we prove that if (M,~x) is stable then ~x is in the core. Note that
efficiency is trivially true, so we only need to show group rationality. Also
note that group rationality in this case is equivalent to the claim that M is a
maximum-weight matching. We consider the following primal linear program P,
using V and E to represent the vertices and edges of the graph G, respectively:

P = min

{∑
i

xi

}

xi + xj ≥ wij ∀(i, j) ∈ E
xi ≥ 0 ∀i ∈ V

And also its dual, D:

D = max

{∑
e

weye

}

∑
j:e=(i,j)∈E

ye ≤ 1 ∀i ∈ V

ye ≥ 0 ∀e ∈ E

~x and M define a feasible solution for both linear programs (taking ye = 1
if e ∈ M and ye = 0 otherwise). We can conclude from the strong duality
theorem that M is a maximal-weight matching. This implies efficiency, since
the sum of xi values is the weight of matching M and is therefore equal to the
value of the cooperating subset of players. Furthermore, for e ∈ M we have
that xi + xj = we by definition. For e /∈M the definition of an outside option
implies that αi ≥ we−xj and the definition of stable says xi ≥ αi. Rearranging
gives us xi + xj ≥ we. This can be summed over the edges of any matching on
the graph. This implies group rationality. This means that we have shown that
stability implies both conditions of membership in the core.
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We now show the reverse, that given ~x in the core, we can show a matching
M such that (M,~x) is stable. We need a matching M where for all e ∈ M
we have xi + xj = we. Note that ~x is a feasible solution for linear program
P. Consider any maximum-weight matching M and set ye = 1 if e ∈ M and
ye = 0 otherwise. V(V) (abusing notation, using V as the value function and
the vertex set) and the weight of M are equal to

∑
xk. As a result, the strong

duality theorem says that ~x and ~y are optimal solutions to both linear programs.
The complementary slackness conditions then tell us that ye(xi + xj −we) = 0.
This is equivalent to saying that if ye > 0 (i.e., if e ∈M) then xi+xj = we. This
is therefore a valid outcome to the game. It remains to show that it is stable.
Take j to be the player such that a contract with j is the best outside option for
player i. By definition αi = we−xj. However, we have that xi+xj ≥ we, which
can be rearranged as xi ≥ we − xj = αi. Therefore this is a stable solution.

Corollary 1 A graph has a non-empty core (or equivalently, a stable outcome)
if and only if the associated linear program defined above has an integrality gap
of 1 for finding a maximum-weight matching.

This corollary gives a useful characterization of graphs with stable outcomes.

Lemma 2 An outcome (M,~x) is stable and balanced if and only if ~x is in the
intersection of the core and the prekernel.

Proof: We already have proven that the (M,~x) is stable if and only if ~x is in the
core and that if ~x is in the core we can construct a maximum-weight matching
consistent with ~x. We now prove that if (M,~x) is balanced, ~x is in the prekernel.
We now give a simplified definition of sij:

sij = max{wik − xi − xk : (i, k) ∈ E, k 6= j} (3)

The condition is weaker because it is not dependent on the choice of S, but this
new definition of power gives a value no higher than the previous definition. For
a set S with only two vertices, the definitions are equivalent. In any non-empty
maximum-weight matching M on a set S, each edge e contributes we to V(S)
and at least we to

∑
xk, so it cannot increase the value. We will show that this

new value is always zero. The group rationality condition (which is assumed
true here) says that the true power values (by the original definition) are at
most zero, and since our new value is a lower bound, this will imply that the
power values by the old definition are also always zero.

To see that this new sij is always zero, we consider two cases for each edge. If
the edge is in M, then the same k that maximizes wik−xi−xk should maximize
αi as well. Similarly, the same k ′ should maximize both wjk ′ −xj−xk ′ and αj.
This means that the balance condition, xi −αi = xj −αj implies that sij = sji.
Alternatively, if the edge is not in M, then take k such that (i, k) ∈ M. Then
sij ≥ wik−xi−xk = 0. However, the conditions of being in the core again tell us
that sij ≤ 0, so sij = 0. If there is no such k, xi = 0 and we can instead consider
any k 6= j with (i, k) ∈ E. We know xk = wik, so sij ≥ wik − xi − xk = 0.

5



Scribe: Adam Groce
Lecture 11 Date: 11/17/2010

Again, this implies that sij = 0. We now have shown that in all cases sij = 0
and therefore have completed this portion of the proof.

All that remains is to prove that if ~x is in the prekernel then (M,~x) is
balanced. This is simple. By definition we know that sij = sji. For an edge
(i, j) ∈M the simplified definition gives us sij = αi− xi and sji = αj− xj. This
means that sij = sji is exactly equivalent to the balance condition.

As stated previously, these lemmas are sufficient to complete the larger proof
of Theorem 2, given that Theorem 1 is assumed.

5 Homework Assignment

The current recession is in large part due to the collapse of the housing market.
There were many reasons for this collapse. One is that if housing prices were
rising, it was in a person’s interest to buy a house even if they couldn’t afford
its actual price, because they could hold it for a little while and resell it, making
a profit greater than what they would owe for the mortgage. Use game theory
to suggest some changes that could reduce the potential for a similar collapse
to reoccur in the future.
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