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1 Overview

In this lecture, we will discuss auctions and its basic definitions. We introduce
the Vickrey Second Price Auction and give incentive-compatibility proofs. We
also introduce Vickrey-Clarke-Groves mechanism and prove its incentive com-
patible. The Clarke-Pivot Payment rule is also stated. Finally, we introduce
Combinatorial Auctions.

2 Introduction

An auction is a method of selling an asset by competitive bidding. An auction
is most useful when the potential price of the asset to be sold is uncertain.
Different auction formats exist, varying according to how prices are quoted and
bids tendered. The most commonly known of these is the English Auction,
which is commonly used for artworks and wine.

In an auction, we have a set of buyers and a set of sellers. The setting is
similar to the market equilibrium setting described in the previous class. The
difference in an auction is that here, there is more negotiation involved and
there is a possibility to deviate from the truth (i.e) lie.

Let us start out with the extreme case of there being only a single seller - the
auctioneer. The auction rule defines the social choice (i.e) the identity of the
winner. Social choice is defined as an aggregation of the preferences of different
participants towards a single joint decision.

2.1 Setting

We have n players and a set of alternatives/outcomes A. Each player has a
valuation function vi : A −→ R where vi(A) is the value player i assigns to the
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alternative A. (vi is usually in terms of money).
We also assume that if i is chosen, then he is additionally given some quantity

of money m. ( where m can be positive or negative). Then, the utility function
becomes ui = vi(a) +m.

This utility being the abstraction of what the player desires to maximize.
These utilities are called quasi-linear preferences because they are linearly de-
pendent on m and on other things independent of m.

Note : Here, m can be dependent on outcome and also, m can be dependent
on player i. (I.e) in general, it can be ui = vi(a) +mi(a).

English Auction English Auction is a famous auction where the auctioneer
raises the current price by small amounts until there is only one bidder remaining
at the current price. The highest bidder wins the auction. This is also known
as the ascending auction.

3 Vickrey’s Second Price Auction

3.1 Setting

We have a single item to sell and there are n players bidding for the item. Player
i has a real value associated for the item, which would be denoted by wi. So,
if player i wins at Price P, then his utility ui = wi − P and if player does not
win, his utility would be zero.

Writing it formally,

vi(i wins) = wi ⇒ ui(i wins) = wi − P

vi(j 6= i wins) = 0⇒ ui(j 6= i wins) = 0− 0 = 0

⇒ ui = vi − P

Considering the fact that wi of a player i is hidden, we should ensure that we
maximize the social welfare (ie) be able to choose i which is (argmax)jwj. Since
all the wi values are private as stated above, we should ensure that our mech-
anism decides in such a way that it cannot be manipulated. Such a mechanism
is called truthful or strategy proof or incentive compatible.

Why is Vickrey auction needed? Let us consider the following cases and
see why they do not work:

• No payment : Just give the item without receiving any payment - If we
give the item for free to the highest bidder, the auction will not be truthful
as it can be easily manipulated by exaggerating.

• Pay your bid : Similar to first price auction. In this model, under-
representing one’s bid can help the bidder gain a positive utility rather
than zero.
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3.2 Formal Definition

Definition 1 Let the winner be the player i with the highest declared value of
wi and let i pay the second highest declared bid (i.e) P∗ = maxj6=iwj. This is
Vickrey’s Second Price Auction.

Proposition 1 For every w1, · · · , wn and for every w ′i(where w ′i is the value
i reports as his bid which could be different from his true value wi), let ui be
Player i’s utility if he bids wi and u ′i be his utility if he bids w ′i. Then ui ≥ u ′i.

Proof: Case I : Let i be the person with the highest bid (i.e) Player i wins the
auction. ⇒ ui = wi − P

∗

Case 1 : w ′i > wi i wins and pays P∗ which remains the same. Therefore,
i’s utility remains unchanged since u ′i = wi − P

∗ = ui.
Case 2 : wi > w

′
i ≥ P∗ Here again, i wins and pays P∗ which remains the

same. Therefore, i’s utility remains unchanged since u ′i = wi − P
∗ = ui.

Case 3 : w ′i < P∗ In this case, player i would lose the auction as there
exists a player j 6= i whose wj = P∗ by the definition of P∗. Therefore, the
second highest bidder would win the auction. And hence, i’s utility would be
u ′i = 0 ≤ ui.

Thus, player i has no incentive to manipulate his bid if he is the person with
the highest bid.

Case II : Player i is not the person with the highest bid (i.e) i is not the
winner. ⇒ ui = 0. Say, Player j with wj is the winner. This means wi ≤ wj.

Case 1 : w ′i > wj This would mean that player i would now have the highest
bid and he would win with P∗ = wj. Since wi < wj, utility of player i would
now be u ′i = wi −wj ≤ 0. Therefore, u ′i ≤ ui = 0.

Case 2 : wj > w ′i > wi Player j would still remain the highest bidder.
Therefore, there is no change in the utility of player i. Hence, ui = u

′
i = 0.

Case 3 : wi > w
′
i Similar to Case 2 above, player j would still remain the

highest bidder. And for player i, u ′i = ui = 0.
Thus, player i has no incentive to manipulate his bid if he is not the person

with the highest bid.
Therefore, in Vickrey’s Second Price Auction, ui ≥ u ′i.

Note 1 Here, we assume that there is no externality (i.e) the effect of a player’s
action on others does not benefit the player. We are concerned with truthfulness
of the parties involved because we need true information to optimise our solution.
There are scenarios where we consider game theory with malicious players where
the mechanism should be designed such that the honest players should get their
fair share.
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Exercise Think of different scenarios and check if Vickrey’s Second Price Auc-
tion would work or not.

Definition 2 A (direct revelation) auction is a social choice function
f : V1 × · · · × Vn −→ A and a vector of payment functions p1, · · · , pn where
pi : V1 × · · · × Vn −→ R is the amount that player i pays.

Definition 3 A mechanism (f, p1, p2, · · · , pn) is called incentive compatible (or
strategy-proof or truthful) if for every player i, every v1 ∈ V1, · · · , vn ∈ Vn and
every v ′i ∈ Vi, if we denote

a = f(vi, v−i) and a ′ = f(v ′i, v−i), then

vi(a) − pi(vi, v−i) ≥ vi(a ′) − pi(v ′i, v−i)

Here, v−i denotes the (n− 1)-dimensional vector where the i’th co-ordinate
is removed.

Intuitively, this means that player i prefers telling the truth vi of his true
valuation rather than any ”lie” v ′i since this gives him a higher(in the weak
sense) utility.

4 Vickrey-Clarke-Groves Mechanism

Definition 4 A mechanism (f, p1, · · · , pn) is called a Vickrey-Clarke-Groves
(VCG) mechanism if

1.
f(v1, · · · , vn) ∈ argmax

∑
i

vi(a)

(i.e) f maximizes the social welfare.

2. for some functions h1, · · · , hn, where hi : v−i −→ R, ((i.e) hi does not
depend on vi) we have that

pi(v1, v2, · · · , vn) = hi(v−i) −
∑
j6=i

vj(f(v1, · · · , vn)) (1)

Note 2 The social welfare of an alternative a ∈ A is the sum of the valua-
tions of all the players for this alternative (i.e) sumivi(a). This is known as
efficiency. Also, note that in the VCG definition, the first equation maximizes
the efficiency and the second equation says that each player is paid an amount
equal to the sum of the values of all the other players (i.e) it is similar to social
welfare where you remove i’s contribution.

Theorem 1 Every VCG mechanism is incentive-compatible.
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Proof: Let the player i have real valuation vi. We need to prove that his utility
does not increase when he uses a different valuation v ′i. Denote a = f(vi, v−i)
and a ′ = f(v ′i, v−i). Now,

ui(a) = vi(a) +
∑
j6=i

vj(a) − hi(v−i)

where ui(a) = vi(a) − P.
Similarly,

ui(a
′) = vi(a

′) +
∑
j6=i

vj(a
′) − hi(v−i)

Now, since f maximizes the social welfare, a = f(vi, v−i) is maximized over
all alternatives.

=⇒ vi(a) +
∑
j 6=i

vj(a) ≥ vi(a ′) +
∑
j6=i

vj(a
′)

Subtracting hi(v−i) from both sides,

ui(a) = vi(a) +
∑
j6=i

vj(a) − hi(v−i) ≥ vi(a ′) +
∑
j6=i

vj(a
′) − hi(v−i) = ui(a

′)

Therefore ui(a) ≥ ui(a
′)

Hence, Every VCG mechanism is incentive-compatible.

Note 3 Here, the payment of each player is independent of his valuation. This
is the typical way to make a mechanism incentive-compatible.

Example 1 In the auction of a single item, finding a player with highest value
is exactly equivalent to maximizing

∑
i vi(a) since only a single player gets non-

zero value.

4.1 Clarke-Pivot Payment

Let us consider the choice of the hi(v−i) function. Substituting, hi = 0, the
mechanism is simple but this implies that the mechanism pays a good amount
of money to the players. Ideally, we would want that the players should pay
money to the mechanism that is not more than the profit they make.

Definition 5 The choice hi(v−i) = maxb∈A
∑

j6=i vj(b) is called the Clarke
Pivot Payment. Under this rule, the payment of player i is pi(v1, · · · , vn) =
maxb

∑
j 6=i vj(b) −

∑
j6=i vj(a) where a = f(v1, · · · , vn).

Intuitively, i pays an amount equal to the total damage that he causes the
other players - the difference between the total welfare of the others with and
without i’s participation. The main property of Clarke Pivot Payment is that
Pi(V) ≥ 0.
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Lemma 1 A VCG with Clarke Pivot Payments makes no positive transfers
(i.e.) that no player is ever paid.

Proof:
Pi(V) = maxb

∑
j 6=i

vj(b) −
∑
j6=i

vj(a)

Case 1 : i has the maximum valuation. Now,
∑

j6=i vj(a) = 0. Therefore,
Pi = second maximum price.

Case 2 : i does not have the maximum valuation Here, Pi(v) = highest price−
highest price = 0.

Thus, we can see that, Pi(V) ≥ 0 always.

Note 4 Clarke Pivot rule does not fit many situations where valuations are
negative but it is a fairly general rule for payment.

Example 2 If we had two items to sell, considering the following three cases,

1. Case 1 : i has the maximum value −→ Pi(V) = (second + third) −
second = third price.

2. Case 2 : i has the second maximum value −→ Pi(V) = (first + third) −
first = third price.

3. Case 3 : i has neither the maximum nor the second maximum value −→
Pi(V) = 0.

In general, if we have k items to sell, we will sell all the items to the first k
bidders at the (k+ 1)th maximum price.

Exercise If the maximum bidder, gets to pay the second price and the second
maximum bidder gets to pay the third price and so on, the mechanism will not
be incentive compatible. Prove this.

5 Combinatorial Auction

In combinatorial auctions, a large number of items are auctioned concurrently
and bidders are allowed to express preferences for a bundle of items. This is
preferable to selling each items separately when there are dependencies between
the different items.

Note 5 If we consider all the cases in a combinatorial auction, we will have
combinatorial explosion.

Definition 6 A valuation V is a real valued function that for each subset S of
items, V(S) is the value that bidder i obtains if he receives this bundle of items.
A valuation must have free ”disposal” (i.e.) be monotone : for S ⊆ T , we have
that V(S) ≤ V(T) and it should be normalised V(φ) = 0.
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1. We usually have sub-additivity as well (i.e) V(S∪ T) ≤ V(S) +V(T).(This
is also called the economies of scale). (i.e) if you buy items together, it
costs you less money than buying each item individually.

2. We also assume that there are no externalities (i.e) a bidder only cares
about the item that he receives and not about how the other items are
allocated among the other bidders.

Definition 7 An allocation of the items among the bidders is S1, · · · , Sn where
Si ∩ Sj = ∅ for every i 6= j. The social welfare obtained by an allocation is∑

i vi(Si). A socially efficient allocation among many bidders with valuations
(v1, · · · , vn) is an allocation with maximum social welfare among all allocations.

Note 6 If we use VCG (with Clarke Pivot payments), then these payments
essentially charge each bidder his ”externality”. So this is incentive compatible
in that scenario. But there are some issues which would be discussed in detail
in the next lecture.

Example 3 Consider a bi-partite graph where the items are on one side of the
graph and the bidders on the other. We can represent which item each bidder
wants with an edge going from the bidder to the item.

When this maximizes the social function, the problem is reduced to maximum
weighted matching(which is polynomial in n). The issue with this example is
that for combinatorial auction, we cannot solve this always.

6 Homework Problem

The problem starts with a story. At MIT, there were some thieves who stole a
student’s knapsack when she was not around. The student on finding it missing
placed ads everywhere that say ”Knapsack contains half-written thesis. Please
return that alone. Will pay 200$. Will not involve police. Meet at 6 PM next
week at Lincoln Building.” The story goes on to say that the thief returned the
thesis but was caught by the police. so, the question is formulated as follows :

How to define a mechanism such that this thief can return the student’s the-
sis and get money from her and be able to avoid the police as well?

One can make rational assumptions to solve the problem. Use some computa-
tional complexity ideas. One could consider situations where each page returned
gains some money for the thief and look into scenarios where the thief stops ap-
pearing (or the student stops paying) after a certain number of pages.
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