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1 Overview

Nash’s theorem guarantees the presence of mixed nash equilibrium in every finite
game. We are concerned here with the problem of finding such an equilibrium
efficiently. In other words, does there exist an algorithm to find the mixed nash
equilibrium in polynomial time? The answer to this question is not known but
it is known finding mixed Nash equilibrium is PPAD complete, which implies
some sort of hardness.

2 Introduction

We start by recalling the Nash’s theorem:

Theorem 1 Every finite game has a mixed Nash equilibrium.

Nash proved the existence of a mixed equilibrium but the computational com-
plexity of finding a mixed equilibrium, which is of obvious algorithmic impor-
tance, is unknown. To be more precise, is the problem of finding a mixed Nash
equilibrium in P ? The answer to this question is unknown. We also do not
know whether the problem is NP complete but it has been recently proven that
the problem is PPAD complete [1].

3 Two similar problems

Another interesting problem which is well known for its non-constructive nature
and which is PPAD complete is the Brouwer’s fixed point problem.
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Definition 1 Brouwer’s Fixed Point Problem.
Given a continuous function f : Bn → Bn, where Bn is a n-dimensional unit
ball, there exists a fixed point in Bn, i.e., a point x such that f(x) = x.

The theorem clearly is an existential one and similar to the situation of Nash’s
equilibrium, finding the fixed point is hard in some way - it is PPAD complete.

We first prove the following lemma.

Lemma 1 Sperner’s Lemma
A triangle ∆ and its triangulation are given. Each vertex of the ∆ is given a
distinct color, say {0, 1, 2}. We color rest of the vertices under the following
restriction - If a vertex is located on an edge of ∆, then it should be colored
using the colors of one of the two end points of the edge. Under this restriction,
given any arbitrary coloring of other vertices, there always exists a tri-chromatic
(colored using 3 distinct colors) atomic (without any smaller triangles inside it)
triangle.

Proof: For each inner triangle formed by the triangulation, we add a vertex
interior to that triangle. We add a special vertex a outside the triangle ∆. Now
we construct a graph on these vertices as follows - We start from a and draw an
arc joining a to the internal vertex (say v1) of some inner triangle (say ∆1) with
an edge (along an edge of ∆) colored 0, 1 . The arc is drawn in such a way that
it cuts the edge colored 0, 1. Now if triangle ∆1 has another edge colored 0, 1,
we draw an arc from v1 to v2 cutting this edge, where v2 is the internal vertex of
some triangle ∆2. We continue this process as long as possible. Observing that
we never enter a triangle twice and given that there are finite number of inner
triangles, our process will come to a halt in finite time. Now noting that every
graph has even number of vertices of odd degree and that a is one such vertex,
we deduce that there is a internal vertex (vc) correspoding to some triangle
∆c with odd degree. But the maximum degree of any vertex is 2. Hence the
degree of vc must be 1. The only possibility of this happening is when ∆c is
trichromatic. Hence there exists a trichromatic triangle.

Exercise. An interesting exercise would be to prove the Brouwer’s theorem for
the one dimensional case.

4 Proof of Brouwer’s theorem in 2-D.

We prove the Brouwer’s theorem when the domain of the continuous function
is a triangular region in euclidean plane which is homotopic to the disk(the
2-dimensional case of the Brouwer’s theorem). In other words, consider a con-
tinuous function f : ∆ → ∆, where ∆ represents a triangular region. We prove
that there exists a point x ∈ ∆ such that f(x) = x.

By the convexity of a triangular region, every point x ∈ ∆ can be written in the
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form
x = a0x0 + a1x1 + a2x2 (1)

where a0 + a1 + a2 = 1, ai ≥ 0 and xi are the vertices of ∆. Now, we define
three sets S0, S1, S2 in the following way - Given a = (a0, a1, a2) and f(a) =
(a ′

0, a
′
1, a

′
2) , if for some i ∈ {0, 1, 2} a ′

i ≤ ai then a ∈ Si . We observe that,
if there is a point a ∈ Si ∀i ∈ {1, 2, 3} then, clearly, f(a) = a, i.e., a is a fixed
point. Our aim is to show that the three sets have a common point.
Given an arbitrary triangulation of T , we assign labels S0, S1, S2 to the vertices
to triangles of T . A vertex is labelled Si only if it belong to Si. We observe
that every point a = (a0, a1, a2) with f(a) = (a ′

0, a
′
1, a

′
2) can be assigned some

label. Indeed owing to the fact that a0 + a1 + a2 = 1 = a ′
0 + a ′

1 + a ′
2, it is

not possible that a ′
i > ai for every i. This implies ∃j such that a ′

j ≤ aj and
we can therefore label a with Sj. Therefore every point can be labelled with
some Sj, j ∈ {0, 1, 2}. It is clear that we can label x0 with S0, x1 with S1 and x2
with S2. Thus the labels or “colors” of the vertices of ∆ are distinct. Also, the
points on the edge of ∆ opposite to the vertex xi must have the ith co-ordinate
0. Since the ith co-ordinate of such a point cannot decrease under f, we can
choose some label other than i for those points (In other words, ai = 0 =⇒
∃j 6= i 3 a ′

j ≤ aj =⇒ the point belongs to Sj and hence can be labelled Sj).
Hence, the resulting labelling is proper, i.e., it satisfies the requirements of the
sperner lemma and we can use the lemma to find a smaller triangle which is
colored distinctly at all its nodes. Repeating this process on the smaller triangle
and continuing to do so, it can be proven that we will converge to a fixed point.

We observe that the graph constructed in the sperner’s lemma has a “path like
structure”, i.e., every vertex has degree 1 or 2. We can assign directions to
the edges of the graph in the following way - Starting from source, we assign
directions in such a way that every vertex has an indegree at most 1 and out
degree at most 1. The existence proof of the Nash equilibrium has the following
abstract structure. A directed graph is defined over the vertices of the polytope
where all strategies are easily recognizable and represented. Each one of these
vertices has in-degree at most 1 and out degree at most 1. Hence the graph
is a collection of paths and cycles. By necessity, there is one vertex with no
in-coming edge and one out going edge - such a vertex is called the standard
source. By the basic properties of directed graphs we conclude that there must
be a vertex with out-degree 0. This sink vertex is our Nash equilibrium.

The above argument suggests a simple algorithm to find a solution - start from
the source and follow the path until you find a sink. Unfortunately, this is
not an efficient algorithm because the number of vertices in the graph could be
exponentially large. We note that even in this case the following three problems
are efficiently solvable -

• Is v a vertex of the graph.

• Is u a neighbor of v in the graph.
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• Which vertex is the “predecessor” and which vertex is the “successor” of
a given vertex.

Apart from NASH there are a host of problems which are PPAD complete like
the sperner problem on an exponentially large set of vertices, finding Brouwer’s
fixed point etc. It is unknown whether PPAD belongs to P or not. Similar to
the class NP, which has NP-complete class as a set of problems which are inter-
reducible in polynomial time (i.e., if one of these problems is solved in polynomial
time, so are the rest), the class PPAD has the class of PPAD complete class.
Problems like NASH, Sperner, Brouwer, Arrow-Debreu equilibrium etc., are
PPAD complete. PPAD completeness is weaker than the NP completeness
because even if PPAD = P it is not clear that NP = P.

5 NASH is PPAD Complete.

Given a unit cube, we divide each dimension into integral multiples of 2−n, for
some n ∈ N. This divides the cube into several cublets. We divide each cublet
into 6 tetrahedra, this process is called simplicization. Given an arbitrary 4
coloring of the cube under the restriction that a face has no “color 1” vertex, an
adjacent face has no “color 2” vertex, the face adjacent of both these faces has
no “color 3” and the rest faces have no “color 4” vertex - it can be proven that
there always exists a tetrahedron with all vertices colored distinctly. This is the
Sperner lemma in 3-dimensions. Again, finding such a tetrahedron is PPAD
complete.

As the first step in proving the hardness of NASH, we define the following prob-
lem and intuitively argue that it is PPAD complete (for rigourous arguement we
refer to [1]). We then provide an intuition behind the reduction of this problem
to the NASH. The problem is called 3D-Brouwer and is defined as following.

Brouwer. We are given a function φ defined from the 3 dimensional cube to
itself. Each of the 23n cubelets defined above can take a value φ(x) at its center
x as x+ δi, for some i ∈ {0, 1, 2, 3}, where -

• δ0 = (−α,−α,−α)

• δ1 = (α, 0, 0)

• δ2 = (0, α, 0)

• δ3 = (0, 0, α)

Here α� 2−n. The problem is to find an interior corner vertex of some cublet
which has among its eight neighboring cublets, four cublets who centers have
values x+ δi - one for each of i ∈ {0, 1, 2, 3}.

We can prove that the 3D-Brouwer is PPAD complete by reducing it to the
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problem of 3D-Sperner (by associating color i with δi). Finally, the PPAD
completeness of NASH with many but constant players can be shown to be
PPAD complete from a reduction of 3D-Brouwer to NASH. We give the basic
intuition behind this reduction - All the players have only two strategies, 0 or
1. The mixed strategy can thus be represented by a number in range [0, 1] ( if
p is the mixed strategy, then the player chooses 1 with probability p). Three
special points, called the leaders, coordinate a point in the cube. The remaining
players respond by analyzing the co-ordinates of this point and by computing
the displacements δi at the centers of the cublet and adjacent cublets. The
resulting choices will incentivize the leaders to change their mixed strategy,
unless the point is a fixed point of φ - in which case they will not change their
strategy and we are at a mixed Nash equilibrium.

The PPAD completeness of NASH equilibrium was first proved for the case of
4 or more players. Later it was proven to be PPAD complete for the case of
3 players but it was conjectured that the problem was in P for 2 Players [2].
Proving this conjecture to be false, it was proven that the problem is PPAD
complete even in the 2 player case [3]
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