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1 Overview

In this lecture, we start with some of the issues of combinatorial auction and
then delve into the notion of frugality in auctions and mechanism design. Finally
we conclude with a discussion on profit-maximization in mechanism design.

2 Issues in Combinatorial Auctions

Recall from the previous lecture that in combinatorial auction each bidder has
an associated real-valued valuation function V defined for each subset of items S.
An allocation of items S1, S2, . . . , Sn among the bidders with valuation function
V1, V2, . . . , Vn respectively is socially efficient if the allocation maximizes the
social welfare

∑
i Vi(Si).

Combinatorial auction is a very general auction setting and it is well-known
that if we use VCG payments, then this is incentive-compatible. However there
are some issues.

The two major issues in combinatorial auctions are,

• Computational Complexity. As it turns out the allocation problem is
NP-hard even for some pretty simple cases. We will show for a very simple
kind of bidders known as single-minded bidders the allocation problem s
not only NP-hard but it is even NP-hard to approximate it within an
approximation factor of n1−ε for any constant ε > 0.

• Representation & Communication. The valuation functions have an
exponential sized domain. So even how these functions can be represented
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is not clear. This issue forces us to look for languages that allow succinct
representation of valuations to be used in practice. We call them bidding
languages. Here we face the issue of expressiveness vs. simplicity. We
want the bidding language to be simple enough for human to express and
for programs to work. On the otherhand we want it to be capable of
expressing any naturally occurring valuation succinctly.

We now give some examples of bidding languages and then dwell into the
hardness proof of allocations for single-minded bidders.

Definition 1 (Atomic Bid) An atomic bid is an offer of P for a set of items
S or any T ⊇ S and zero otherwise.

We can use combination of atomic bids with XOR and OR.

Example 1

1. If we have ({a, b}, 3)XOR ({c, d}, 5), then V ({a, c}) = 0, V ({a, b, c, d}) = 5

2. If we have ({a, b}, 3)OR ({c, d}, 5), then V ({a, c}) = 0, V ({a, b, c, d}) = 8

3. ({a, b}, 3)OR ({c, d}, 5), then V ({a, b, c}) = 3 (since we can satisfy only the
first one)

Combining atomic bids with OR, XOR to obtain more expressive language
is a very natural approach. Constructing bidding language is an active area of
research (e.g., for Google). Refer to the Section 11.4 of [2] for more details.

Definition 2 (Single-minded Bidder) A single-minded bidder is a bidder
with an atomic bid, i.e., a bidder for which there is a set A ⊆ S of goods
and a value α ≥ 0, such that

• V(T) = α, whenever T ⊇ A

• V(T) = 0, otherwise.

Therefore a single-minded bidder can be represented by a tuple (A,α).

Even for this special case of single-minded bidders, it is not possible to
implement the VCG mechanism in polynomial time. As we mentioned earlier
the allocation problem is NP-hard even to obtain a reasonable approximation.

Theorem 1 Given single-minded bidders (A1, α1), (A2, α2), . . . , (An, αn), grant-
ing a set of disjoint bids (i.e., a subset of players such that the corresponding Ai’s
are pairwise disjoint) to maximize the sum

∑
i αi of the values of the granted

bids is NP-Hard (indeed Ω(n1−ε)-hard to approximate for any positive ε > 0)
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Proof: We give a simple reduction from NP-hard weighted independent set
problem. Here input is a graph G = (V, E) and a weight function w : V → R≥0
and the goal is to obtain an independent set of maximum weight. We create an
item for each edge of G and a player for each vertex of G. For a vertex/player
v ∈ V(G), set αv = w(v) and Av equal to the set of edges of G incident to v.
A set of vertices forms an independent set iff the corresponding players can be
granted simultaneously and the weight of the independent set is exactly equal
to the social welfare of the allocation. Since the weighted independent set is
Ω(n1−ε)-hard to approximate for any positive ε > 0, the claim of hardness
follows.

3 Frugality in Auctions & Mechanism Design

n this setting the auctioneer is a buyer who wants to purchase goods or services.
Agents are sellers who have costs for providing the goods or service. The auc-
tioneer’s goal is to maximize the social welfare; but the question is how much
he should overpay. Frugality of mechanism is the amount by which he overpays.

When the auctioneer was a seller, the goal was to design mechanism to
maximize his profit. Here our goal is to design a mechanism to minimize the
payments auctioneer makes. Hence, analyzing the frugality of mechanism be-
comes an important aspect.

Note that for a single good in Vickrey’s auction, payment equals the second
cheapest price. In general, we might have more complicated system.

Example 2 (Path Auction) Given a graph (network), the auctioneer wants
to buy an s-t path. Each edge is owned by a different agent and has an internal
cost to do the transfer (say). The auctioneer will try to buy the shortest path.

Example 3 (Spanning Tree Auction) The same setting but the auctioneer
wants to buy a spanning tree instead. The auctioneer will try to buy the mini-
mum weight spanning tree.

Remark. For single-item auctions, in the absence of any prior information
about agent’s valuations; we can show Vickrey auction is optimal and of course
achieves a profit equal to the value of the second highest bidder. Thus, a natural
first mechanism to consider in this setting is the VCG auction.

We can use VCG, but the main question is when VCG or any other incentive
compatible mechanism achieves a total payment of at most the second cheapest
solution ? Let us see a few examples.

In Figure 1 the weight of the shortest s-t path is 4. VCG pays for each
weighted 1 edge a payment of 11− (4− 1) = 8 and pays 4− 4 = 0 for 11-weight
edge. Thus in total VCG pays 32, whereas the second cheapest path has a
weight of 11. Hence the frugality ratio is 32/11. Thus comparing to the second
option, the payment is high. This ratio can indeed be made arbitrarily bad
(Ω(n) where n is the length of the path). This is a simple generalization of the
same example.
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Figure 1: An Example of a Path Auction

a b

cd

1

10 1

11

1

1212

Figure 2: An Example of a Spanning Tree Auction
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In Figure 2 minimum spanning tree has a weight of 3. VCG pays (12−(3−1))
for the edges (a, d) and (a, b) and pays (13 − (3 − 1)) = 11 for (b, c). Thus
the total payment is 31. The second minimum spanning tree that is disjoint
from the first has a weight of 10 + 11 + 12 = 33. Hence the frugality ratio is
31/33 < 1.

A frugal mechanism should minimize the total payment. For example, the
path auction as we saw was bad, whereas the spanning tree auction was good.
But we would like to derive a more general statement.

Before deriving a more general statement regarding the path and the span-
ning tree auctions and the frugality ratio, let us recall the direct characterization
of incentive compatible mechanism:

Direct Characterization of Incentive Compatible Mechanisms:

A mechanism is incentive compatible if and only if,

1. The payment Pi does not depend on Vi, but only on alternative
(outcome) chosen f(Vi, V−i).

2. The mechanism optimizes for each player. That is for every Vi, we
have that f(Vi, V−i) ∈ argmaxa(Vi(a)−Pi), where the quantification
is over all the alternatives in the range of f(·, V−i).

We are now ready to prove the following theorem,

Theorem 2 For any incentive compatible mechanism M and any graph G with
two vertex disjoint s-t paths P and P ′, there is a valuation profile V such that
M pays an Ω(

√
|P||P ′|) factor more than the cost of the second cheapest path.

Proof: Let k = |P| and k ′ = |P ′|. Ignore all the edges not in P or P ′ by setting
their cost to infinity. We define Vi,j as follows: The cost of the ith edge of P is
Vi =

1√
k

. The cost of the jth edge of P ′ is Vj =
1√
k ′ and all other edges have

cost zero.
Note that M on Vi,j must select either all the edges in path P or all the

edges in path P ′ as winner (since we have only two edge disjoint paths P and
P ′ as options). Define directed bipartite graph G ′ = (P, P ′, E ′) on edges in path
P and P ′ as follows. For any pair of vertices (i, j) in the bipartite graph, there
is either a directed edge (i, j) in E ′ saying M on Vi,j selecting path P ′ (called
forward edges) or a directed edge (j, i) denoting M on Vi,j selecting path P
(called backward edges). Note that |E ′| = kk ′. Without loss of generality

assume E ′ has more forward edges and thus at least kk ′

2
forward edges. Since

there are k edges in path P, there must be one vertex i with at least k
′

2
forward

edges. Let F(i) represent neighbors of i in the bipartite graph with |F(i)| ≥ k ′

2
.

Now consider the valuation profile Vi0 in which the cost of the ith edge of P is
Vi =

1√
k

and all other edges have cost zero.

By the definition of F(i), for any j ∈ F(i), M on instance Vi,j selects path
P ′. Since M is incentive compatible, its allocation rule must be monotone, i.e.,
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if agent j is selected when bidding Vj, it must be selected when bidding 0 (it is
called weak-monotonicity). Therefore M selects P ′ on Vi,0.

In addition, for j ∈ F(i), the payment should be at least 1√
k

, since when the

valuation profile is Vi,j, the payment should be at least 1√
k ′ (otherwise j will

receive negative utility). By the direct characterization (mentioned just before
Theorem 2) of incentive compatible mechanisms, we know when other bidders
valuations and the outcome are the same, the payment should also be the same.
So the payment for j is at least 1√

k ′ , when the valuation profile is Vi,0. Therefore

on Vi,0, the total payment of M is at least F(i) 1√
k ′ ≥

√
k ′

2
.

Remember the second cheapest path is P with cost 1√
k

. Therefore the over-

payment ratio is at least
√
kk ′/2, establishing the result.

Thus no incentive compatible mechanism is more frugal than VCG in the
worst case. As a direct corollary of Theorem 2 we get,

Corollary 1 There exists a graph for which any incentive compatible mecha-
nism has a worst-case Ω(n) factor overpayment.

Proof: Just consider two disjoint paths each of length n/2.
However for spanning tree auction or in general when the set system are the

bases of a matroid, VCG indeed has a frugality ratio at most one.

Theorem 3 The total VCG cost for spanning tree auction is at most the cost
of the second cheapest disjoint spanning tree.

and more generally,

Theorem 4 VCG has frugality ratio payment
cost of second disjoint solution at most one if

and only if the feasible sets of the set system are the bases of a matroid.

The proof is involved and omitted (see References in Section 13.5 of [2]).

4 Profit Maximization in Mechanism Design

Now we concentrate on profit maximization in mechanism design; called optmal
mechanism design in economics. We even get rid off the truthfulness. The topic
was first studied by Guruswami et al. in [3]. We consider a natural case study
here.

Theorem 5 There is a simple logn + logm approximation for pricing when
the bidders are single-minded and the items are available in unlimited supply
(where n is the number of bidders and m is the number of items and we price
the items individually)
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Proof: We consider pricing in which all items are priced the same. Thus the
candidate prices are qi =

Vi

|Si|
. (agent i wants set Si with value Vi and buys it

only if the price is less than qi.)
Assume q1 ≥ q2 ≥ . . . ≥ qn. If all items are priced at qi, then the seller

profit is Ri =
∑
1≤j≤i |Sj|

Vi

|Si|
. By rearranging we have, Vi =

|Si|Ri∑
i
j=1 |Sj|

. Note

that the price is too much for j > i. Because the algorithm selects the price R
maximizing the profit, we have that Ri ≤ R for all i and thus,

n∑
i=1

Vi =

n∑
i=1

|Si|Ri∑i
j=1 |Sj|

=

n∑
i=1

|Si|Ri

|Si|+
∑i−1
j=1 |Sj|

=

n∑
i=1

Ri

|Si|∑
k=1

1

|Si|+
∑i−1
j=1 |Sj|

≤ R

n∑
i=1

|Si|∑
k=1

1

k+
∑i−1
j=1 |Sj|

≤ R ln

n∑
i=1

|Si|

Now
∑n
i=1 Vi is a trivial upper bound on the optimum, so the theorem

follows because
∑n
i=1 |Si| ≤ nm.

The analysis of this algorithm is tight. However the algorithm is very simple
and yet it follows from the hardness of a certain coverage problem called unique
coverage problem (under reasonable hardness assumption), that we cannot de-
sign any better algorithm for it [4].
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