
CMSC858F: Algorithmic Lower Bounds: Fun

with Hardness Proofs

Fall 2014

A Crash Course in Complexity Theory

Instructor: Mohammad T. Hajiaghayi
Scribe: Ahmed Abdelkader

September 4, 2014

1 Overview

In a general sense, complexity theory studies the basic question: how hard is this
problem? Naturally, this leads to an elaborate classification of computational
problems into easy, intermediate, hard, harder or even undecidable. For further
information, the reader is referred to any of the standard textbooks, e.g. [1, 2].

Typically, the hardness of a problem is measured by the amout of work
needed to solve the worst-case, i.e. hardest, instances of that problem. We
first need to specify a model of computation to formally describe the process
of executing an algorithm to find a solution. Turing machines are one such
convenient model of computation, and can actually serve as a representative to
almost all other models. Then, the amount of work, i.e. the number of basic
operations, is expressed as a function in the input size, where the input is a string
encoding of the instance to be solved. Asymptotic notation, e.g. {O,Θ,Ω},
greatly simplifies the analysis by allowing one to overlook some constants and
ignore lower order terms.

2 The Scale of Computational Difficulty

In order of increasing difficulty, we may classify problems into three nested
classes as shown in Figure 1 and defined informally as:

• P = {problems solvable in polynomial time, i.e. nc}.

• EXP = {problems solvable in exponential time, i.e. 2n
c}.

• R = {problems solvable in finite time}. (R for recursive [3, 4]).

1

Scribe: Ahmed Abdelkader
Lecture 2 Date: 09/04/2014

Figure 1: Scale of computational difficulty (Image courtesy of Erik Demaine).

2.1 Example Problems

• Negative-weight cycle detection ∈ P.

– Use the Bellman-Ford algorithm.

• n× n Chess ∈ EXP but /∈ P.

– Who wins starting from a given board configuration?

• TETRIS ∈ EXP but unknown whether ∈ P.

– Survive an incoming sequence of pieces starting with a given board.

• Halting problem /∈ R.

– Given an arbitrary pair of a computer program, or equivalently a
Turing machine, and an input string, determine whether the program
will terminate (halt) or run forever.

– Being a decision problem that cannot be solved by a Turing machine
(or any humanly conceivable computer), we say it is undecidable.

3 Nondeterminism and the Complexity Class NP

Unless stated otherwise, we consider decision problems, i.e. problems that can
be stated as a YES/NO question.

• NP = {decision problems solvable in polytime via a lucky algorithm}.

Lucky means it can make lucky guesses, which turn out to be always right,
without having to try all possible computation paths, i.e. no brute-force search.
The sequence of guesses is also called a certificate. In addition, guesses may be
thought of as binary decisions or 0/1 bits.

The abbreviation NP stands for nondeterministic polynomial-time. This
nondeterministic model of computation means the algorithm makes guesses and

2

Scribe: Ahmed Abdelkader
Lecture 2 Date: 09/04/2014

then outputs the decision. The guesses are guaranteed to lead to a YES outcome
if possible, and NO otherwise.

The same class of problems can be defined equivalently as:

• NP = {decision problems with solutions that can be verified in polytime}.

This means that when the answer is YES, the algorithm can prove it by
providing evidence in form of a certificate that can be checked by a polytime al-
gorithm to verify it is actually correct. Figure 2 shows how the scale of difficulty
looks like now.

Figure 2: P vs NP (Image courtesy of Erik Demaine).

3.1 Example: TETRIS ∈ NP
• Below is an outline of a nondeterministic algorithm:

– Guess a lucky sequence of moves.

– Did you survive the input sequence?

• Proof of YES: the list of moves to make (rules of Tetris are easy).

In typical Tetris, n ×m = 20 × 10, but for constant n the problem is in P
and a dynamic programming approach can be used.

3.2 P vs NP

One of the Millennium Problems established by the Clay Mathematics Institute
for a $1 Million prize.

• P 6= NP is a big conjecture, widely believed to be true.

• Consequences?

– Cannot engineer luck.

– Generating (proofs of) solutions can be harder than checking them.

– See [7] for a more elaborate exposition.

3

Scribe: Ahmed Abdelkader
Lecture 2 Date: 09/04/2014

3.3 CoNP

Negated versions of the YES/NO questions in NP, loosely defined as:

• CoNP = {negations of problems ∈ NP}.

• CoNP = {decision problems with short verifiable proofs of NO answer}.

So far, everything in NP ∩ CoNP ∈ P.

4 X-hard and X-Complete

Here, X can be any complexity class, e.g. NP, EXP, etc. We give the informal
definitions:

• X− hard = “as hard as” every problem in X.

– More on this below.

• X− complete = X-hard ∩ X.

– Sometimes X-easy is used as ∈ X.

4.1 Examples

• TETRIS is NP-complete [5].

– If P 6= NP, then TETRIS ∈ NP − P.

• CHESS is EXP-complete, which also implies /∈ P.

– CHESS ∈ EXP −NP if NP 6= EXP (which is also an open problem).

Figure 3 shows how complete problems lie at the boundaries between classes
and how hard problems fill the gaps. It is always tempting to push some bound-
aries and bridge some gaps.

5 Space Complexity and the Class PSPACE

• PSPACE = {problems solvable in polynomial space}.

– ⊆ EXP: a polynomially bounded space can only be in exponentially
many states i.e. algorithm may not execute more than an exponential
number of steps.

– ⊆NP: simulate all paths of computation of polynomially bounded
length (in search for the lucky path) and return YES if any succeeds.

– open question whether either of the two inclusions above is strict.

• Example: Rush Hour is PSPACE-complete [8].

4

Scribe: Ahmed Abdelkader
Lecture 2 Date: 09/04/2014

Figure 3: X-hard and X− complete (Image courtesy of Erik Demaine).

– /∈ P if P 6= NP (since NP ⊆ PSPACE) or NP 6= PSPACE (since
P ⊆ NP).

Figure 4 shows the scale of difficulty after introducing space complexity
classes. Observe the inclusions and recall that PSPACE = NSPACE.

Figure 4: Space complexity classes (Image courtesy of Erik Demaine).

6 Beyond Exponential

We mention few more complexity classes, just for the sake of doing a more
thourough review.

5

Scribe: Ahmed Abdelkader
Lecture 2 Date: 09/04/2014

• EXP(TIME) ⊆ EXPSPACE ⊆ 2EXP(TIME) ⊆ 2EXPSPACE ⊆ ...

– 2EXP: double exponential 22
nc

, etc.

• L = LOGSPACE

– Only O(logn) bits of space.

• Hierarchy theorems for both time and space classes, e.g.:

– EXP (2EXP (...
– L (PSPACE (EXPSPACE (2EXPSPACE (...
– For more, refer to Chapters 3 and 4 in [1].

• Nondeterministic space

– NSPACE = PSPACE (Savitch’s theorem) [9]

∗ In general, space bound squares.

∗ In a sence, if you can check in the validity of a solution in
PSPACE then you can run over all solutions as well in PSPACE.

– NEXP,N2EXP, ...: analogs of NP.

• Intermediate problems:

– e.g. factorization and graph isomorphism.

– Belong to the intersection of NP and CoNP but not known to be in
P so far.

– Showing NP ∩ CoNP = P is equivalent to proving P 6= NP.

7 Defining “as hard as” via Reductions

Almost all hardness proofs are by reduction from known hard problem to your
problem. Typically, a reduction is a polytime algorithm to convert an instance
of A to an instance of B, such that the YES/NO solution to A yields a solution
to B. The existence of the reduction has the following consequenes:

• If one can solve B, then one can also solve A. B ∈ P =⇒ A ∈ P,
B ∈ NP =⇒ A ∈ NP, etc.

• Intuitively, we can say that B is “at least as hard as A”.

• Equivalently, A may be regarded as a special case of B.

• This is a “one-call” reduction (Karp) [10].

• May also allow “multi-call” reduction (Turing) [11].

– Solve A using an oracle that solves B.

– Does not help much for problems we consider in this class.

6

Scribe: Ahmed Abdelkader
Lecture 2 Date: 09/04/2014

7.1 Examples from Algorithms

• Unweighted shortest paths → weighted (hint: w = 1).

• Min-product path → min-sum path (hint: use logs).

• Longest path → shortest path (hint: negate).

• Min-weight k-step path → min weight path (hint: create k copies of the
graph and link to adjacent nodes in next layer only).

8 Examples of Hardness Proofs

8.1 3SAT for NP-completeness

An instance of 3SAT is composed of n variables and m clauses in Conjunctive
Normal Form (CNF), such that each clause hs a disjunction of 3 literals, where
each literal is either a variable or a negation of a variable. An instance of 3SAT
would look like this:

(x1 ∨ x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ ¬x4)∧ . . .

3SAT asks to determine whether the boolean formula can be satisfied using an
assignment of truth values to each of the n variables.

Naturally, many problems can be encoded as satisfiability problems. For
example, a game like Super Mario Bros is NP-complete via a reduction from
3SAT [12].

8.2 Nondeterministic Constraint Logic PSPACE-completeness

Nondeterministic Constraint Logic (NCL) is a powerful technique for proving
the hardness of games and puzzles e.g. showing Rush Hour is PSPACE-complete
[8].

In particular, the following edge reversal problem [13] captures a nondeter-
ministic model of computation which was used to prove the hardness of more
games: Given a directed graph with edge weights ∈ {1, 2} and regular degree
3, find a sequence of edge reversals to reverse a target edge, while at all times
maintaining total in-weight ≥ 2 at each vertex.

Note that it is easy to to see why this problem is PSPACE-complete. Since
PSPACE = NSPACE, by Savitch’s theorem, we only need to show that we can
verify a given solution in PSPACE. But, as we only maintain the current state,
then this is actually feasible.

References

[1] Arora, Sanjeev, and Boaz Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

7

Scribe: Ahmed Abdelkader
Lecture 2 Date: 09/04/2014

[2] Papadimitriou, Christos H. Computational complexity. John Wiley and Sons
Ltd., 2003.

[3] Turing, Alan Mathison. ”On computable numbers, with an application to
the Entscheidungsproblem.” J. of Math 58 (1936): 345-363.

[4] Church, Alonzo. ”The calculi of lambda-conversion“, Volume 6 of Annals of
Mathematics Studies (1941).

[5] Breukelaar, R., Demaine, E. D., Hohenberger, S., Hoogeboom, H. J.,
Kosters, W. A., & Liben-Nowell, D. (2004). Tetris is hard, even to approx-
imate. International Journal of Computational Geometry & Applications,
14(01n02), 41-68.

[6] Millennium Problems, Clay Mathematics Institute.

[7] Aaronson, Scott. ”Why philosophers should care about computational com-
plexity.” In Computability: Gdel, Turing, Church, and beyond (eds. 2012).

[8] Flake, Gary William, and Eric B. Baum. ”Rush Hour is PSPACE-complete,
or Why you should generously tip parking lot attendants.” Theoretical Com-
puter Science 270.1 (2002): 895-911.

[9] Savitch, Walter J. ”Relationships between nondeterministic and determinis-
tic tape complexities.” Journal of computer and system sciences 4.2 (1970):
177-192.

[10] Karp, Richard M. Reducibility among combinatorial problems. Springer
US, 1972.

[11] Turing, Alan Mathison. ”Systems of logic based on ordinals.” Proceedings
of the London Mathematical Society 2.1 (1939): 161-228.

[12] Aloupis, G., Demaine, E. D., Guo, A., & Viglietta, G. (2012). Classic
Nintendo games are NP-hard. arXiv preprint arXiv:1203.1895.

[13] Demaine, Erik D., and Robert A. Hearn. ”Constraint logic: A uniform
framework for modeling computation as games.” Computational Complexity,
2008. CCC’08. 23rd Annual IEEE Conference on. IEEE, 2008.

8

http://www.claymath.org/millennium-problems

	Overview
	The Scale of Computational Difficulty
	Example Problems

	The Complexity Class NP
	Example: TETRIS NP
	P vs NP
	CoNP

	X-hard and X-Complete
	Examples

	Space Complexity and the Class PSPACE
	Beyond Exponential
	Defining ``as hard as'' via Reductions
	Examples from Algorithms

	Examples of Hardness Proofs
	3SAT for NP-completeness
	Nondeterministic Constraint Logic PSPACE-completeness

