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1 Overview

In the next two lectures, we look at lower bounds conjectured on two important
and well-known problems. One is the All-Pairs-Shortest-Path(APSP) problem
which is believed to be truly cubic(i.e. there is no exact algorithm for this
problem which runs in time O(n3−ε) for a constant ε > 0). The second problem
considered is the 3−SUM problem which is conjectured to be truly quadratic(i.e.
there is no exact algorithm that runs in time O(n2−ε) for a constant ε > 0).
This lecture will focus on the cubic hardness and the APSP problem.

2 Problem Definition

Definition 1 (All Pair Shortest Path Problem) Given a directed(or undi-
rected) graph G(V,E) which has n vertices and m edges with the absolute edge
weights in the set {0, 1, . . . ,M}, the problem is to compute the shortest distance
between vertex x and y for all pairs of vertices x and y.

This problem is a very important and central problem in graph theory. There
is a well-known O(n3) algorithm for this problem due to Floyd and Warshall.
The algorithm is as follows
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Data: A graph G(V,E) given as an adjacency matrix G(i,j)
Result: A resulting matrix dist such that dist(i,j) gives the shortest

distance between the vertices i and j
∀i, j ∈ V, assign dist(i,j) as G(i,j) ;
for k=1 to n do

for i=1 to n do
for j =1 to n do

if dist(i,j) > dist(i,k) + dist(k,j) then
dist(i,j) ← dist(i,k) + dist(k,j) ;

end

end

end

end
Algorithm 1: Floyd-Warshall Algorithm

Let n be the number of vertices in the graph. The above algorithm runs in
time O(n3). Another way to compute the all pair shortest path is by invoking
the Dijikstra’s algorithm for each vertex. Dijikstra’s algorithm finds the shortest
path from a given vertex v to all other vertices in the graph. Hence, invoking
it n times by choosing a different starting vertex v each time, will result in
calculating the all pair shortest path. A single invocation of the Dijikstra’s
algorithm takes O(n +m logm). Hence, n iterations of this algorithm takes a
time of O(nm + n2 logm). In the worst case, m can be O(n2) and hence the
worst case running time using this approach is also O(n3).

3 Related Measures

In this section, we will look at some of the related measures and lower bounds
on their running time.

3.1 Radius

The radius R of a graph G(V,E) is a single value which denotes the following
value

min
v

max
u
dist(u, v)

Given a vertex v, let α denote the maximum value of the shortest distance
to any vertex. Radius of the graph is the smallest possible value for α over all
vertices in the graph.

The vertex v which minimizes the value α is called the center of the graph.

Center of graph = arg min
v

max
u
dist(u, v)
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3.2 Diameter

Another closely related measure is the diameter of the graph. It is the maximum
possible distance between any two vertices in the graph. Mathematically,

Diameter = max
u,v

dist(u, v)

3.3 Median of the graph

Median of the graph is the minimum value over all the vertices v in the graph,
such that the sum of distances to all vertices u in the graph from v is minimized.
Formally,

Median = min
v

∑
u

dist(v, u)

3.4 Betweeness Centrality

We now define another measure called the betweeness centrality. This measure
is very closely related to the number of s-t shortest paths, passing through a
given vertex v.

For a given vertex v, the betweeness centrality BC(v) is defined as

BC(v) =
∑

s,t∈V\{v};s6=t

BCs,t(v)

where, BCs,t(v) is the fraction of shortest paths between s,t, that uses the ver-
tex v.

Notice that when all the shortest paths are unique, i.e. there exists exactly
one shortest path between a pair of vertices s,t, then BC(v) denotes the number
of s,t shortest paths that passes through v.

3.5 Positive Betweeness Centrality

Positive betweeness centrality is an indicator function for a vertex v. If there
exits a s,t shortest path through v, then the value is 1, else it is 0. Formally,

PBC(V) =

{
1 if BC(v) > 0
0 otherwise

3.6 Negative Triangle

Given an undirected graph G with integer edge weights in {−M, . . . ,M}, the
problem is to check if there exists a triangle in the graph, such that the sum of
weights on this triangle is negative.
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4 Sub-cubic Equivalence

The measures Radius, Diameter, Median are all more generally referred to as
”Centrality Measures”. These measures appear in a variety of applications such
as social network, transportation and allocation problems, biological networks,
etc. Hence, calculating these measures efficiently has a lot of real life implica-
tions.

It is clear that, if we have a sub-cubic algorithm for the APSP problem, we
can use that algorithm to calculate the above centrality measures in sub-cubic
time. It only takes O(n2) time, once we have calculated the dist(u,v) for all
pairs u, v ∈ V. The question is can we calculate these centrality measures with-
out calculating the APSP. In other words, is there a truly sub-cubic algorithm
for calculating radius, diameter and median ? The answer to this was given by
Abboud et al [2] in which they claim that there exists a truly sub-cubic algo-
rithm for computing the centrality measures if and only if there exists a truly
sub-cubic time algorithm for the APSP problem.

The next natural question is to ask are there algorithms for the APSP prob-
lem which does better than the O(n3) running time of Floyd-Warshall. Fred-

man[4] gave a O(n
3 3
√
log logn
3
√
logn

), which is a slight improvement over the Floyd-

Warshall running time, in the year 1976. Note that this running time is still not

truly sub-cubic, since
3
√
logn

3
√
log logn

= o(nε) for any given constant ε > 0. After

several years of research and a series of algorithms, Ryan Williams[3] gave an

algorithm which ran in time O( n3

2Ω(
√

logn) ) in the year 2014. This running time,
though is better than all previous known algorithms, still doesn’t achieve truly
sub-cubic time. It still remains an open question as to wheter there exists an
algorithm for the APSP problem running in time O(n3−ε) for a given constan
ε > 0.

APSP conjecture: In fact, it is conjectured that the APSP problem is truly
cubic, i.e. there doesn’t exist an algorithm which runs in time O(n3−ε) for a
given constant ε > 0, such that it computes the exact values of the all pair
shortest paths.

4.1 Sub-cubic reductions

A problem A is said to have a sub-cubic reduction to a problem B, if we have
an algorithm that is truly sub-cubic for B then using this algorithm as a sub-
routine we can come up with an algorithm that is truly-subcubic for problem
A.

Sub-cubic Equivalence: Problem A and problem B are said to be sub-cubic
equivalent, if there is a sub-cubic reduction from problem A to problem B and
vice-versa.
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Theorem 1 (AGW ’15) Finding Radius, Median and Betweeness Centrality
are subcubically equivalent. Hence, devising a truly-subcubic algorithm for one
of them, gives a truly-subcubic algorithm for all the problems.

We will now look at a diagramatic view of the various reductions and ex-
plicitly mark the ones which are non-trivial and the ones that are folklore.

Figure 1: Sub-Cubic Equivalence between various problems

4.2 Reduction from Diameter to Positive Betweeness Cen-
trality

Theorem 2 Given a T(n,m)-time algorithm for the positive betweeness cen-
trality, we can obtain a Õ(T(n,m))1- time algorithm for the diameter problem.

Proof: Without loss of generality, let us assume that all distances and hence,
the diameter are even (Multiply all distance by 2 initially, and divide the finally
obtained diameter by 2). Now, given a graph G(V,E) as input to the diameter
problem, obtain a graph G’(V’, E’) as follows. V’ = V ∪ b i.e. add a new vertex
labelled b. E’ = E ∪ S, where S = {(b, u, D

2
) : u ∈ V}. The largest possible

1Õ hides the polylog multiplicative factor
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value of D such that the positive centrality of the vertex b is 1, is the required
diameter of the original graph G. Hence, performing a binary search on the
value of D, constructing a graph G’ for every such D and using the algorithm
for computing positive betweeness centrality as a sub-routine, will give us the
required value of D.

Consider the following example of a graph, whose diameter is to be deter-
mined.

Figure 2: Original graph G

Now, applying the transformation for a given value of D, we obtain G’ as
shown in the diagram

Figure 3: Transformed Graph G’

Now doing a binary search on the values of D, to find the largest value of D
such that positive centrality measure of this new vertex b is 1, we get D as 10.

4.3 Reduction from Positive Centrality Measure to Diam-
eter

Theorem 3 Given a T(n,m)-time algorithm for the diameter problem, we can
obtain a Õ(T(n,m))-time algorithm for the Positive Betweeness Centrality prob-
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lem.

Proof: Given a procedure to calculate diameter of a graph, we want to use it
in sub-cubic time, to get an algorithm to obtain PCM(b) for a given vertex b.
To do this, we will modify the input graph G(V,E), to obtain a graph G’(V’,E’)
as follows:

• V’ = V ∪ { va for every v ∈ V } ∪ { vb for every v ∈ V }

• E’ = E ∪ E1 ∪ E2 ∪ E3 ∪ E4, where E1, E2, E3, E4 are constructed as
follows. E1 is an edge from every va to the corresponding v with weight
D’ - dist(v,b).
E2 is an edge from every v to the corresponding vb with weight D’ -
dist(v,b).
E3 is an edge from every v to the correponding va with weight 0.
E4 is an edge from every vb to the corresponding v with 0.

Here, D’ = 2 ∗ diameter(G). Diagramatically, it looks as follows.

Figure 4: Pictorial representation of construction of graph G’

Note, we need to invoke the Dijikstra’s algorithm once to calculate the
distance between vertex b and all vertices v in graph G. This runs in
sub-cubic time.
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Now, select all pairs of vertices (s,t) in the original graph. We can see that for
any pair (s,t) in G, the dist(sa, tb) in the graph G’ ≤ 2D’. This is because, D∗

= dist(sa,tb) = D’ - dist(s,b) + D’ - dist(b,t) + dist(s,t) = 2D’ -(dist(s,b) +
dist(b,t) - dist(s,t)) ≤ 2D’. The last inequality is due to triangle inequality.

The equality in the triangle inequality holds iff the path whose sum of weights
is equal to dist(s,t) passes through the vertex b. In other words, D∗ = 2D’ iff
PBM(b) =1. This completes the reduction.

Observe that the diameter in the new graph is at most five times the original
graph G.

4.4 Reduction from Negative Triangle to Radius

Theorem 4 Given a T(n,m)-time algorithm for the radius problem, we can
obtain a Õ(T(n,m))-time algorithm for the Negative Triangle problem.

Proof: Given an instance of the negative triangle problem, i.e. a graph G(V,E)
with weights in the set {−M, . . . ,M} we will construct a graph H(V’,E’) which
is in the form of four layers I,J,K,L. The vertex set V’ has four times the number
of vertices in V and a special vertex called b. For a vertex v ∈ V, we have four
vertices vI, vJ, vK, vL, each present in the corresponding layer. Now, add the
following edges in the graph(Let Q = 3M):

• An edge from b to each of vI in the layer I whose weight is 2Q + M.

• If there exists an edge (u,v) in the original graph, add an edge between
uI and vJ in the new graph H, with weight Q+w(u,v). Similarly, add an
edge between uJ and vK and an edge between uK and vL, all with weights
Q + w(u,v).

• For every edge (u,v) and u 6= v in the original graph, add an edge between
uI and vL with weight 2Q in the new graph.

It is important to note that in the above construction there is no edge be-
tween any two vertices in the same layer. With the above construction of H,
we will make the following claim 1. Also, note that H has O(n) nodes and
the maximum edge weight is O(M). The following diagram gives a pictorial
representation of the construction of graph H.

Claim 1 The radius of the graph H is strictly less than 9M if and only if G
contains a negative triangle.

Proof: We will make four observations which will essentially lead to the claim.

• Observation 1: If radius R < 9M, then the center of the graph is con-
tained in the layer I. This is easy to see, since for vertices in the other
layers J,K,L , the distance to vertex b is at least 3Q(=9M).
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Figure 5: Pictorial representation of construction of graph H

• Observation 2: Any vertex vI in layer I is at a distance of at most
2Q+2M(=8M) from every other vertex in the graph, except for the corre-
sponding vertex vL in layer L.

• Observation 3: If vertex v in graph G was present in a negative tri-
angle, then dist(vI,vL) in graph H < 3Q(= 9M). (The 3Q appears for
the distance between layer I and layer J + layer J and layer K + layer K
and layer L. The strict inequality is because the triangle was a negative
triangle in original graph and hence the sum of weights is less than 0)

• Observation 4: Finally, if a vertex v is not in a negative triangle in the
original graph, then dist(vI,vL) ≥ min(3Q, 4Q-2M)(=9M).

The claim follows easily from the above four observations.
Given this claim, we need to construct the graph H and check if the radius

in this new graph is strictly less than 9M. This completes the reduction.
As shown by Williams and Williams[7], the problems APSP and Negative

Triangle are equivalent under sub-cubic reductions. It is also a folklore that
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there exists a sub-cubic reduction from radius to the APSP problem. Hence,
the above theorem implies that, there exists a sub-cubic reduction from the
Negative triangle problem to the APSP problem.

5 Approximate versions of the problems

In this section, we will breifly touch upon some of the approximation versions
of this problem and see the best known running time for those problems.

Theorem 5 (Zwick ’98) We can compute a (1+ε)-approximation to the APSP
problem running in time Õ(n

ω

ε
), where ω is the exponent in the running time

of the fastest known matrix multiplication problem(i.e. ω < 2.3728639)

Before we describe the next theorem, we will define a well known hypothesis
known as the Strong Exponential Time Hypothesis (SETH).

Definition 2 (SETH) The hypothesis claims that, unless P = NP, the general
version of the satisfiability problem (SAT) cannot be solved in time O(2δn) time
for a given constant δ < 1.

The next theorem gives a running time bound on computing the approximate
value of the diameter and the betweeness centrality measure.

Theorem 6 (RV ’13) If there exists an algorithm, which computes a 1.5-
approximation of the diameter and the betweeness centrality measure in time
O(m2−ε) for a given constant ε > 0, then SETH would be false.

6 Open Problems

Some of the open problems which are closely related to these topics are as
follows:

• Is the diameter problem equivalent to the APSP problem under sub-cubic
reductions ?

• Is there a theorem for approximating the radius and median problem,
similar to the one given by RV’13 ?

• Lastly, the big open problem is does there exist a truly sub-cubic time
algorithm to the APSP problem?
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